Skip to content

Hospital episodes can overlap or have gaps which can result in under or over counting. This package contains functions which can be used to rectify this common analytical issue in NHS data.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

nhs-r-community/NHSRepisodes

Repository files navigation

NHSRepisodes

Lifecycle: experimental R-CMD-check All Contributors

Installation instructions

You can install the development version of this package from GitHub with:

# install.packages("remotes")
remotes::install_github("https://github.com/nhs-r-community/NHSRepisodes")

To find out more about the functions there is a vignetted for getting started.

Motivation

NHSRepisodes is a (hopefully) temporary solution to a small inconvenience that relates to data.table, dplyr and ivs; namely that dplyr is currently slow when working with a large number of groupings and data.table does not easily support the record class on which ivs intervals are based.

To expand on issues consider the following small set of episode data:

library(NHSRepisodes)
library(dplyr)
library(ivs)
library(data.table)

# note - we need functionality introduced in dplyr 1.1.0.
if (getNamespaceVersion("dplyr") < "1.1.0") {
    warning("Please update dplyr to version 1.1.0 or higher to run these examples.")
    knitr::knit_exit()
}

# Let's note the package versions used in generating this README
packages <- c("NHSRepisodes", "dplyr", "data.table", "ivs")
mutate(tibble(packages), version = sapply(packages, getNamespaceVersion))
#> # A tibble: 4 × 2
#>   packages     version   
#>   <chr>        <chr>     
#> 1 NHSRepisodes 0.1.0.9000
#> 2 dplyr        1.1.4     
#> 3 data.table   1.16.0    
#> 4 ivs          0.2.0

# Create a dummy data set give the first and last dates of an episode
dat <- tribble(
    ~id, ~start, ~end,
    1L, "2020-01-01", "2020-01-10",
    1L, "2020-01-03", "2020-01-10",
    2L, "2020-04-01", "2020-04-30",
    2L, "2020-04-15", "2020-04-16",
    2L, "2020-04-17", "2020-04-19",
    1L, "2020-05-01", "2020-10-01",
    1L, "2020-01-01", "2020-01-10",
    1L, "2020-01-11", "2020-01-12",
)

# This will create an object called dat and also open in the console
(dat <- mutate(dat, across(start:end, as.Date)))
#> # A tibble: 8 × 3
#>      id start      end       
#>   <int> <date>     <date>    
#> 1     1 2020-01-01 2020-01-10
#> 2     1 2020-01-03 2020-01-10
#> 3     2 2020-04-01 2020-04-30
#> 4     2 2020-04-15 2020-04-16
#> 5     2 2020-04-17 2020-04-19
#> 6     1 2020-05-01 2020-10-01
#> 7     1 2020-01-01 2020-01-10
#> 8     1 2020-01-11 2020-01-12

The {ivs} package provides an elegant way to find the minimum spanning interval across these episodes:

dat |>
    mutate(interval = iv(start = start, end = end + 1)) |>
    reframe(interval = iv_groups(interval, abutting = FALSE), .by = id)
#> # A tibble: 4 × 2
#>      id                 interval
#>   <int>               <iv<date>>
#> 1     1 [2020-01-01, 2020-01-11)
#> 2     1 [2020-01-11, 2020-01-13)
#> 3     1 [2020-05-01, 2020-10-02)
#> 4     2 [2020-04-01, 2020-05-01)

Note that {ivs} creates intervals that are right-open meaning they are inclusive on the left (have an opening square bracket [) and exclusive on the right (with a closing a rounded bracket )). Consequently, in our first call to mutate() we added 1 to the end value. This ensures that the full range of dates are considered (e.g. for the first row we want to consider all days from 2020-01-01 to 2020-01-10 not only up until 2020-01-09).

This works great when we only have a small number of ids to group by. However, it becomes noticeably slow for a larger number:

# Creating a larger data set
n <- 125000
id2 <- sample(seq_len(n), size = n * 5, replace = TRUE)
start2 <- as.Date("2020-01-01") + sample.int(365, size = n * 5, replace = TRUE)
end2 <- start2 + sample(1:100, size = n * 5, replace = TRUE)

# creates the object big_dat and shows the first 10 rows as a tibble in the console
(big_dat <- tibble(id = id2, start = start2, end = end2))
#> # A tibble: 625,000 × 3
#>        id start      end       
#>     <int> <date>     <date>    
#>  1  47215 2020-12-29 2021-02-16
#>  2  91739 2020-09-16 2020-11-12
#>  3 114791 2020-01-31 2020-02-27
#>  4  83644 2020-08-17 2020-11-04
#>  5  68824 2020-02-14 2020-05-06
#>  6 100194 2020-12-11 2021-03-18
#>  7   3871 2020-06-21 2020-07-06
#>  8 118901 2020-01-09 2020-03-23
#>  9  80676 2020-07-23 2020-08-19
#> 10  84580 2020-07-17 2020-10-07
#> # ℹ 624,990 more rows

# checking the time to run
system.time(
    out_dplyr <- 
        big_dat |>
        mutate(interval = iv(start, end + 1)) |>
        reframe(interval = iv_groups(interval, abutting = FALSE), .by = id)
)
#>    user  system elapsed 
#>   17.00    0.28   17.30

If you were not already using it, this is likely the time you would reach for the {data.table} package. Unfortunately the interval class created by {ivs} is built upon on the record type from vctrs, and this class is not supported in {data.table}:

DT <- as.data.table(big_dat)
DT[, interval := iv(start, end + 1)]
#> Error in `[.data.table`(DT, , `:=`(interval, iv(start, end + 1))): Supplied 2 items to be assigned to 625000 items of column 'interval'. If you wish to 'recycle' the RHS please use rep() to make this intent clear to readers of your code.

We can go through a few more steps to get a comparable answer but still find slightly slower performance:

fun <- function(s, e) {
    interval <- iv(s, e)
    groups <- iv_groups(interval, abutting = FALSE)
    list(start = iv_start(groups), end = iv_end(groups))
}

system.time(out_dt <- DT[, fun(start, end + 1), by = id])
#>    user  system elapsed 
#>   19.26    0.49   19.77

NHSRepisodes solves this with the merge_episodes() function:

merge_episodes(big_dat)
#> # A tibble: 335,828 × 4
#>       id .interval_number .episode_start .episode_end
#>    <int>            <int> <date>         <date>      
#>  1     1                1 2020-01-15     2020-01-27  
#>  2     1                2 2020-02-13     2020-11-14  
#>  3     1                3 2020-11-15     2021-02-13  
#>  4     2                1 2020-01-03     2020-03-25  
#>  5     2                2 2020-03-31     2020-06-09  
#>  6     2                3 2020-10-31     2020-11-08  
#>  7     2                4 2020-12-17     2021-01-23  
#>  8     3                1 2020-03-08     2020-03-19  
#>  9     3                2 2020-04-13     2020-05-26  
#> 10     3                3 2020-11-30     2020-12-01  
#> # ℹ 335,818 more rows

# And for comparison with earlier timings
system.time(out <- merge_episodes(big_dat))
#>    user  system elapsed 
#>    0.59    0.11    0.44

# equal output (subject to ordering)
out <- out |> 
    mutate(interval = iv(start = .episode_start, end = .episode_end + 1)) |> 
    select(id, interval)

out_dplyr <- arrange(out_dplyr, id, interval)

out_dt <- out_dt |> 
    as.data.frame() |> 
    as_tibble() |> 
    mutate(interval = iv(start = start, end = end)) |> 
    select(id, interval) |> 
    arrange(id, interval)

all.equal(out, out_dplyr)
#> [1] TRUE
all.equal(out, out_dt)
#> [1] TRUE

We also provide another function add_parent_interval() that associates the the minimum spanning interval with each observation without reducing to the unique values:

add_parent_interval(dat)
#> # A tibble: 8 × 6
#>      id start      end        .parent_start .parent_end .interval_number
#>   <int> <date>     <date>     <date>        <date>                 <int>
#> 1     1 2020-01-01 2020-01-10 2020-01-01    2020-01-10                 1
#> 2     1 2020-01-03 2020-01-10 2020-01-01    2020-01-10                 1
#> 3     2 2020-04-01 2020-04-30 2020-04-01    2020-04-30                 1
#> 4     2 2020-04-15 2020-04-16 2020-04-01    2020-04-30                 1
#> 5     2 2020-04-17 2020-04-19 2020-04-01    2020-04-30                 1
#> 6     1 2020-05-01 2020-10-01 2020-05-01    2020-10-01                 3
#> 7     1 2020-01-01 2020-01-10 2020-01-01    2020-01-10                 1
#> 8     1 2020-01-11 2020-01-12 2020-01-11    2020-01-12                 2

Contributors

Tim Taylor
Tim Taylor

📖 ⚠️ 💻
Zoë Turner
Zoë Turner

📖
James McMahon
James McMahon

🤔

About

Hospital episodes can overlap or have gaps which can result in under or over counting. This package contains functions which can be used to rectify this common analytical issue in NHS data.

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •