Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Emulated dynamic MX quantization #27

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,6 +392,20 @@ def _verify_quantization(self) -> None:
f"method specified in the `quantization` argument "
f"({self.quantization}).")

from vllm.model_executor.layers.quantization.mx_quant import (
SUPPORTED_MX_CONFIGS)
if self.quantization is not None and self.quantization in \
SUPPORTED_MX_CONFIGS:
dtypes = self.quantization.split("_")
# remove 'w' and 'a' prefix
weight_dtype = dtypes[0][1:]
act_dtype = None if len(dtypes) == 1 else dtypes[1][1:]
self.hf_config.quantization_config = {
"weight_dtype": weight_dtype,
"act_dtype": act_dtype,
"quant_method": self.quantization,
}

if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(
Expand Down
5 changes: 5 additions & 0 deletions vllm/model_executor/layers/quantization/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@
from vllm.model_executor.layers.quantization.ipex_quant import IPEXConfig
from vllm.model_executor.layers.quantization.marlin import MarlinConfig
from vllm.model_executor.layers.quantization.modelopt import ModelOptFp8Config
from vllm.model_executor.layers.quantization.mx_quant import (
SUPPORTED_MX_CONFIGS, MXConfig)
from vllm.model_executor.layers.quantization.neuron_quant import (
NeuronQuantConfig)
from vllm.model_executor.layers.quantization.qqq import QQQConfig
Expand Down Expand Up @@ -51,6 +53,9 @@
"experts_int8": ExpertsInt8Config,
"neuron_quant": NeuronQuantConfig,
"ipex": IPEXConfig,
# Aliases for the different MX quant configs
**{config: MXConfig
for config in SUPPORTED_MX_CONFIGS},
}


Expand Down
141 changes: 141 additions & 0 deletions vllm/model_executor/layers/quantization/mx_quant.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
from typing import Any, Dict, List, Optional

import torch
from torch.nn import Module

from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.parameter import ModelWeightParameter

MXFP8_E5M2 = "fp8e5"
MXFP8_E4M3 = "fp8e4"
MXFP6_E3M2 = "fp6e3"
MXFP6_E2M3 = "fp6e2"
MXFP4_E2M1 = "fp4e2"

# Supported element dtypes
# TODO: add support for MXINT8
SUPPORTED_DTYPES = [
MXFP8_E5M2,
MXFP8_E4M3,
MXFP6_E3M2,
MXFP6_E2M3,
MXFP4_E2M1,
]

SUPPORTED_MX_CONFIGS = [
*[
f"w{wdtype}_a{adtype}"
for wdtype, adtype in zip(SUPPORTED_DTYPES, SUPPORTED_DTYPES)
],
*[f"w{wdtype}" for wdtype in SUPPORTED_DTYPES],
]

# https://github.com/pytorch/ao/blob/71a442ae775e0ea5a541dcce637b128070d1243c/torchao/prototype/mx_formats/constants.py#L3-L18
DTYPE_MAP = {
MXFP8_E5M2: torch.float8_e5m2,
MXFP8_E4M3: torch.float8_e4m3fn,
MXFP6_E3M2: "fp6_e3m2",
MXFP6_E2M3: "fp6_e2m3",
MXFP4_E2M1: "fp4_e2m1",
}


class MXConfig(QuantizationConfig):
"""MX Quantization Configuration."""

def __init__(
self,
weight_dtype: str,
act_dtype: Optional[str],
) -> None:
if weight_dtype not in SUPPORTED_DTYPES:
raise ValueError(f"Unsupported weight scheme {weight_dtype}")
if act_dtype and act_dtype not in SUPPORTED_DTYPES:
raise ValueError(f"Unsupported activation scheme {act_dtype}")

self.weight_dtype = DTYPE_MAP[weight_dtype]
self.act_dtype = DTYPE_MAP[act_dtype] if act_dtype else None
# Hardcoded for the MX spec
self.block_size = 32

def get_name(self) -> str:
return "mx_quant"

def get_supported_act_dtypes(self) -> List[torch.dtype]:
return [torch.half, torch.bfloat16]

@classmethod
def get_min_capability(cls) -> int:
return 70

@staticmethod
def get_config_filenames() -> List[str]:
return []

@classmethod
def from_config(cls, config: Dict[str, Any]) -> "MXConfig":
weight_dtype = cls.get_from_keys(config, ["weight_dtype"])
act_dtype = cls.get_from_keys(config, ["act_dtype"])
return cls(weight_dtype=weight_dtype, act_dtype=act_dtype)

def get_quant_method(self, layer: Module,
prefix: str) -> Optional["MXLinearMethod"]:
if isinstance(layer, LinearBase):
return MXLinearMethod(self)
return None


class MXLinearMethod(LinearMethodBase):
"""Linear method for MX quant. """

def __init__(self, quant_config: MXConfig):
try:
import torchao # noqa: F401
except ImportError as err:
raise ImportError("Please install torchao==0.6.1 via "
"`pip install torchao==0.6.1` to use "
"mx quantization.") from err
self.quant_config = quant_config

def create_weights(self, layer: Module, input_size_per_partition: int,
output_partition_sizes: List[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
del input_size, output_size # Unused.
weight_loader = extra_weight_attrs.get("weight_loader")
weight = ModelWeightParameter(data=torch.empty(
sum(output_partition_sizes),
input_size_per_partition,
dtype=params_dtype),
input_dim=1,
output_dim=0,
weight_loader=weight_loader)
layer.register_parameter("weight", weight)

def process_weights_after_loading(self, layer: Module) -> None:
from torchao.prototype.mx_formats.mx_tensor import MXTensor
layer.weight_mx = MXTensor.to_mx(
layer.weight.data.t().contiguous().to(torch.float32),
self.quant_config.weight_dtype, self.quant_config.block_size)
layer.weight = None

def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
orig_dtype = x.dtype
from torchao.prototype.mx_formats.mx_tensor import MXTensor
if not self.quant_config.act_dtype:
weight = layer.weight_mx.to_dtype(orig_dtype).t().contiguous()
out = torch.nn.functional.linear(x, weight, bias)
else:
x = MXTensor.to_mx(x.to(torch.float32),
self.quant_config.act_dtype,
self.quant_config.block_size)
out = torch.mm(x, layer.weight_mx)
if bias:
out += bias

return out.to(orig_dtype)