Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
Merge branch 'main' into fix-step-status
Browse files Browse the repository at this point in the history
  • Loading branch information
dbarbuzzi authored Jun 27, 2024
2 parents cf26778 + 4ab3b8a commit 2778c1e
Show file tree
Hide file tree
Showing 295 changed files with 9,858 additions and 1,818 deletions.
103 changes: 103 additions & 0 deletions .buildkite/nightly-benchmarks/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
# vLLM benchmark suite

## Introduction

This directory contains the performance benchmarking CI for vllm.
The goal is to help developers know the impact of their PRs on the performance of vllm.

This benchmark will be *triggered* upon:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label.

**Benchmarking Coverage**: latency, throughput and fix-qps serving on A100 (the support for more GPUs is comming later), with different models.

**Benchmarking Duration**: about 1hr.

**For benchmarking developers**: please try your best to constraint the duration of benchmarking to less than 1.5 hr so that it won't take forever to run.


## Configuring the workload

The benchmarking workload contains three parts:
- Latency tests in `latency-tests.json`.
- Throughput tests in `throughput-tests.json`.
- Serving tests in `serving-tests.json`.

See [descriptions.md](tests/descriptions.md) for detailed descriptions.

### Latency test

Here is an example of one test inside `latency-tests.json`:

```json
[
{
"test_name": "latency_llama8B_tp1",
"parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"load_format": "dummy",
"num_iters_warmup": 5,
"num_iters": 15
}
},
]
```

In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-benchmarks-suite.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`

Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.

WARNING: The benchmarking script will save json results by itself, so please do not configure `--output-json` parameter in the json file.


### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.

The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.

### Serving test
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:

```
[
{
"test_name": "serving_llama8B_tp1_sharegpt",
"qps_list": [1, 4, 16, "inf"],
"server_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"tensor_parallel_size": 1,
"swap_space": 16,
"disable_log_stats": "",
"disable_log_requests": "",
"load_format": "dummy"
},
"client_parameters": {
"model": "meta-llama/Meta-Llama-3-8B",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200
}
},
]
```

Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`

The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.

WARNING: The benchmarking script will save json results by itself, so please do not configure `--save-results` or other results-saving-related parameters in `serving-tests.json`.

## Visualizing the results
The `convert-results-json-to-markdown.py` helps you put the benchmarking results inside a markdown table, by formatting [descriptions.md](tests/descriptions.md) with real benchmarking results.
You can find the result presented as a table inside the `buildkite/performance-benchmark` job page.
If you do not see the table, please wait till the benchmark finish running.
The json version of the table (together with the json version of the benchmark) will be also attached to the markdown file.
The raw benchmarking results (in the format of json files) are in the `Artifacts` tab of the benchmarking.
62 changes: 62 additions & 0 deletions .buildkite/nightly-benchmarks/benchmark-pipeline.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
steps:
- label: "Wait for container to be ready"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
containers:
- image: badouralix/curl-jq
command:
- sh
- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100 Benchmark"
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
priorityClassName: perf-benchmark
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- name: devshm
mountPath: /dev/shm
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
nodeSelector:
nvidia.com/gpu.product: NVIDIA-A100-SXM4-80GB
volumes:
- name: devshm
emptyDir:
medium: Memory
# - label: "H100: NVIDIA SMI"
# agents:
# queue: H100
# plugins:
# - docker#v5.11.0:
# image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
# command:
# - bash
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
# mount-buildkite-agent: true
# propagate-environment: true
# propagate-uid-gid: false
# ipc: host
# gpus: all
# environment:
# - VLLM_USAGE_SOURCE
# - HF_TOKEN

3 changes: 2 additions & 1 deletion .buildkite/nightly-benchmarks/kickoff-pipeline.sh
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
#!/usr/bin/env bash

# NOTE(simon): this script runs inside a buildkite agent with CPU only access.
set -euo pipefail

# Install system packages
Expand All @@ -23,4 +24,4 @@ if [ "$BUILDKITE_PULL_REQUEST" != "false" ]; then
fi

# Upload sample.yaml
buildkite-agent pipeline upload .buildkite/nightly-benchmarks/sample.yaml
buildkite-agent pipeline upload .buildkite/nightly-benchmarks/benchmark-pipeline.yaml
Loading

1 comment on commit 2778c1e

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

bigger_is_better

Benchmark suite Current: 2778c1e Previous: 4ab3b8a Ratio
{"name": "request_throughput", "description": "VLLM Engine throughput - synthetic\nmodel - NousResearch/Llama-2-7b-chat-hf\nmax_model_len - 4096\nbenchmark_throughput {\n \"use-all-available-gpus_\": \"\",\n \"input-len\": 256,\n \"output-len\": 128,\n \"num-prompts\": 1000\n}", "gpu_description": "NVIDIA L4 x 1", "vllm_version": "0.5.1", "python_version": "3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]", "torch_version": "2.3.0+cu121"} 2.498276006744003 prompts/s 2.50032143674207 prompts/s 1.00
{"name": "token_throughput", "description": "VLLM Engine throughput - synthetic\nmodel - NousResearch/Llama-2-7b-chat-hf\nmax_model_len - 4096\nbenchmark_throughput {\n \"use-all-available-gpus_\": \"\",\n \"input-len\": 256,\n \"output-len\": 128,\n \"num-prompts\": 1000\n}", "gpu_description": "NVIDIA L4 x 1", "vllm_version": "0.5.1", "python_version": "3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]", "torch_version": "2.3.0+cu121"} 959.337986589697 tokens/s 960.1234317089549 tokens/s 1.00

This comment was automatically generated by workflow using github-action-benchmark.

Please sign in to comment.