-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added MNIST spiking cnn example in Keras/Nengo
- Loading branch information
Showing
2 changed files
with
155 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
from __future__ import print_function | ||
|
||
import os | ||
|
||
import nengo | ||
import numpy as np | ||
|
||
import keras | ||
from keras.datasets import mnist | ||
from keras.models import Sequential | ||
from keras.layers import Dense, Dropout, Activation, Flatten | ||
from keras.layers import Convolution2D, AveragePooling2D | ||
from keras.utils import np_utils | ||
|
||
import nengo | ||
from nengo_extras.keras import ( | ||
load_model_pair, save_model_pair, SequentialNetwork, SoftLIF) | ||
|
||
|
||
filename = 'mnist_spiking_cnn' | ||
|
||
# --- Load data | ||
img_rows, img_cols = 28, 28 | ||
nb_classes = 10 | ||
|
||
# the data, shuffled and split between train and test sets | ||
(X_train, y_train), (X_test, y_test) = mnist.load_data() | ||
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) | ||
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) | ||
X_train = X_train.astype('float32') / 255 | ||
X_test = X_test.astype('float32') / 255 | ||
|
||
# --- Train model | ||
if not os.path.exists(filename + '.h5'): | ||
batch_size = 128 | ||
nb_epoch = 12 | ||
|
||
# number of convolutional filters to use | ||
nb_filters = 32 | ||
# size of pooling area for max pooling | ||
nb_pool = 2 | ||
# convolution kernel size | ||
nb_conv = 3 | ||
|
||
# convert class vectors to binary class matrices | ||
Y_train = np_utils.to_categorical(y_train, nb_classes) | ||
Y_test = np_utils.to_categorical(y_test, nb_classes) | ||
|
||
kmodel = Sequential() | ||
|
||
softlif_params = dict( | ||
sigma=0.02, amplitude=0.063, tau_rc=0.022, tau_ref=0.002) | ||
|
||
kmodel.add(Convolution2D(nb_filters, nb_conv, nb_conv, | ||
border_mode='valid', | ||
input_shape=(1, img_rows, img_cols))) | ||
kmodel.add(SoftLIF(**softlif_params)) | ||
kmodel.add(Convolution2D(nb_filters, nb_conv, nb_conv)) | ||
kmodel.add(SoftLIF(**softlif_params)) | ||
kmodel.add(AveragePooling2D(pool_size=(nb_pool, nb_pool))) | ||
kmodel.add(Dropout(0.25)) | ||
|
||
kmodel.add(Flatten()) | ||
kmodel.add(Dense(128)) | ||
kmodel.add(SoftLIF(**softlif_params)) | ||
kmodel.add(Dropout(0.5)) | ||
kmodel.add(Dense(nb_classes)) | ||
kmodel.add(Activation('softmax')) | ||
|
||
kmodel.compile(loss='categorical_crossentropy', | ||
optimizer='adadelta', | ||
metrics=['accuracy']) | ||
|
||
kmodel.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, | ||
verbose=1, validation_data=(X_test, Y_test)) | ||
score = kmodel.evaluate(X_test, Y_test, verbose=0) | ||
print('Test score:', score[0]) | ||
print('Test accuracy:', score[1]) | ||
|
||
save_model_pair(kmodel, filename, overwrite=True) | ||
|
||
else: | ||
kmodel = load_model_pair(filename) | ||
|
||
|
||
# --- Run model in Nengo | ||
presentation_time = 0.2 | ||
|
||
model = nengo.Network() | ||
with model: | ||
u = nengo.Node(nengo.processes.PresentInput(X_test, presentation_time)) | ||
seq = SequentialNetwork(kmodel, synapse=nengo.synapses.Alpha(0.005)) | ||
nengo.Connection(u, seq.input, synapse=None) | ||
|
||
input_p = nengo.Probe(u) | ||
output_p = nengo.Probe(seq.output) | ||
|
||
# --- image display | ||
input_shape = kmodel.input_shape[1:] | ||
|
||
def display_func(t, x, input_shape=input_shape): | ||
import base64 | ||
import PIL | ||
import cStringIO | ||
|
||
values = x.reshape(input_shape) | ||
values = values.transpose((1, 2, 0)) | ||
values = values * 255. | ||
values = values.astype('uint8') | ||
|
||
if values.shape[-1] == 1: | ||
values = values[:, :, 0] | ||
|
||
png = PIL.Image.fromarray(values) | ||
buffer = cStringIO.StringIO() | ||
png.save(buffer, format="PNG") | ||
img_str = base64.b64encode(buffer.getvalue()) | ||
|
||
display_func._nengo_html_ = ''' | ||
<svg width="100%%" height="100%%" viewbox="0 0 100 100"> | ||
<image width="100%%" height="100%%" | ||
xlink:href="data:image/png;base64,%s" | ||
style="image-rendering: pixelated;"> | ||
</svg>''' % (''.join(img_str)) | ||
|
||
display_node = nengo.Node(display_func, size_in=u.size_out) | ||
nengo.Connection(u, display_node, synapse=None) | ||
|
||
# --- output spa display | ||
vocab_names = ['ZERO', 'ONE', 'TWO', 'THREE', 'FOUR', | ||
'FIVE', 'SIX', 'SEVEN', 'EIGHT', 'NINE'] | ||
vocab_vectors = np.eye(len(vocab_names)) | ||
|
||
vocab = nengo.spa.Vocabulary(len(vocab_names)) | ||
for name, vector in zip(vocab_names, vocab_vectors): | ||
vocab.add(name, vector) | ||
|
||
config = nengo.Config(nengo.Ensemble) | ||
config[nengo.Ensemble].neuron_type = nengo.Direct() | ||
with config: | ||
output = nengo.spa.State(len(vocab_names), subdimensions=10, vocab=vocab) | ||
nengo.Connection(seq.output, output.input) | ||
|
||
with nengo.Simulator(model) as sim: | ||
nb_presentations = 20 | ||
sim.run(nb_presentations * presentation_time) | ||
|
||
nt = int(presentation_time / sim.dt) | ||
blocks = sim.data[output_p].reshape(nb_presentations, nt, nb_classes) | ||
choices = np.argmax(blocks[:, -20:, :].mean(axis=1), axis=1) | ||
accuracy = (choices == y_test[:nb_presentations]).mean() | ||
print('Spiking accuracy (%d examples): %0.3f' % (nb_presentations, accuracy)) |