-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
local council action scorecards import
- Loading branch information
Showing
1 changed file
with
162 additions
and
0 deletions.
There are no files selected for viewing
162 changes: 162 additions & 0 deletions
162
hub/management/commands/import_council_scorecards_score.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
from django.conf import settings | ||
|
||
import pandas as pd | ||
from tqdm import tqdm | ||
|
||
from hub.import_utils import filter_authority_type | ||
from hub.models import DataSet, DataType | ||
|
||
from .base_importers import BaseImportFromDataFrameCommand, MultipleAreaTypesMixin | ||
|
||
declare_map = { | ||
"Y": "Yes", | ||
"N": "No", | ||
} | ||
|
||
|
||
class Command(MultipleAreaTypesMixin, BaseImportFromDataFrameCommand): | ||
cons_row = "gss_code" | ||
message = "Importing council scorecards data" | ||
uses_gss = True | ||
do_not_convert = True | ||
|
||
data_file = settings.BASE_DIR / "data" / "2023_scorecards_data.csv" | ||
|
||
area_types = ["STC", "DIS"] | ||
|
||
defaults = { | ||
"label": "Action Scorecards overall score", | ||
"description": "", | ||
"data_type": "percent", | ||
"category": "place", | ||
"release_date": "2023", | ||
"source_label": "Data from the Climate Emergency UK.", | ||
"source": "https://councilclimatescorecards.uk/", | ||
"source_type": "csv", | ||
"table": "areadata", | ||
"data_url": "", | ||
"comparators": DataSet.numerical_comparators(), | ||
"is_filterable": True, | ||
"is_shadable": True, | ||
"is_public": True, | ||
"unit_type": "raw", | ||
"unit_distribution": "physical_area", | ||
} | ||
|
||
data_sets = { | ||
"council_action_scorecard_total": { | ||
"defaults": defaults, | ||
"col": "weighted_total", | ||
}, | ||
"council_action_scorecard_bh": { | ||
"defaults": { | ||
**defaults, | ||
"label": "Buildings & Heating", | ||
}, | ||
"col": "Buildings & Heating", | ||
}, | ||
"council_action_scorecard_transport": { | ||
"defaults": { | ||
**defaults, | ||
"label": "Transport", | ||
}, | ||
"col": "Transport", | ||
}, | ||
"council_action_scorecard_planning": { | ||
"defaults": { | ||
**defaults, | ||
"label": "Planning & Land Use", | ||
}, | ||
"col": "Planning & Land Use", | ||
}, | ||
"council_action_scorecard_governance": { | ||
"defaults": { | ||
**defaults, | ||
"label": "Goverance & Finance", | ||
}, | ||
"col": "Governance & Finance", | ||
}, | ||
"council_action_scorecard_biodiversity": { | ||
"defaults": { | ||
**defaults, | ||
"label": "Biodiversity", | ||
}, | ||
"col": "Biodiversity", | ||
}, | ||
"council_action_scorecard_collaboration": { | ||
"defaults": { | ||
**defaults, | ||
"label": "Collaboration & Engagement", | ||
}, | ||
"col": "Collaboration & Engagement", | ||
}, | ||
"council_action_scorecard_waste": { | ||
"defaults": { | ||
**defaults, | ||
"label": "Waste Reduction & Food", | ||
}, | ||
"col": "Waste Reduction & Food", | ||
}, | ||
} | ||
|
||
def add_data_sets(self, df): | ||
if not self._quiet: | ||
self.stdout.write("Creating dataset + types") | ||
|
||
total_data_set, created = DataSet.objects.update_or_create( | ||
name="council_action_scorecard_total", defaults=self.defaults | ||
) | ||
|
||
section_data_set, created = DataSet.objects.update_or_create( | ||
name="council_action_scorecard_sections", | ||
defaults={ | ||
**self.defaults, | ||
"is_range": True, | ||
"label": "Action Scorecards section scores", | ||
}, | ||
) | ||
|
||
total_data_set.areas_available.add(self.get_area_type()) | ||
section_data_set.areas_available.add(self.get_area_type()) | ||
|
||
for name in tqdm(self.data_sets.keys()): | ||
if name == "council_action_scorecard_total": | ||
data_set = total_data_set | ||
else: | ||
data_set = section_data_set | ||
|
||
data_type, created = DataType.objects.update_or_create( | ||
data_set=data_set, | ||
name=name, | ||
area_type=self.get_area_type(), | ||
defaults={ | ||
"data_type": "percent", | ||
"label": self.data_sets[name]["defaults"]["label"], | ||
}, | ||
) | ||
self.data_types[name] = data_type | ||
|
||
def get_dataframe(self): | ||
df = pd.read_csv(self.data_file) | ||
df = filter_authority_type(df, self.area_type, "gss") | ||
|
||
councils = [] | ||
for index, row in df.iterrows(): | ||
councils.append( | ||
{ | ||
"gss_code": row["gss"], | ||
"weighted_total": row["weighted_total"] * 100, | ||
"Buildings & Heating": row["Buildings & Heating"] * 100, | ||
"Transport": row["Transport"] * 100, | ||
"Governance & Finance": row["Governance & Finance"] * 100, | ||
"Biodiversity": row["Biodiversity"] * 100, | ||
"Planning & Land Use": row["Planning & Land Use"] * 100, | ||
"Waste Reduction & Food": row["Waste Reduction & Food"] * 100, | ||
"Collaboration & Engagement": row["Collaboration & Engagement"] | ||
* 100, | ||
} | ||
) | ||
|
||
df = pd.DataFrame(councils) | ||
|
||
return df |