Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a link to the source code #45

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 13 additions & 12 deletions app.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@
dbc.NavItem(dbc.NavLink("Report Feedback", href="https://docs.google.com/forms/d/e/1FAIpQLSf1-sw-P0SQGokyeaOpEmLda0UPJW93qkrI8rfp7D46fHVi6g/viewform?usp=sf_link")),
dbc.NavItem(dbc.NavLink("Preprint Publication", href="https://chemrxiv.org/articles/preprint/NPClassifier_A_Deep_Neural_Network-Based_Structural_Classification_Tool_for_Natural_Products/12885494/1")),
dbc.NavItem(dbc.NavLink("API", href="https://ccms-ucsd.github.io/GNPSDocumentation/api/#structure-np-classifier")),
dbc.NavItem(dbc.NavLink("Source code", href="https://github.com/mwang87/NP-Classifier"))
],
navbar=True)
],
Expand Down Expand Up @@ -101,7 +102,7 @@ def display_page(pathname):
else:
return "CC1C(O)CC2C1C(OC1OC(COC(C)=O)C(O)C(O)C1O)OC=C2C(O)=O"

# This function will rerun at any
# This function will rerun at any
@app.callback(
[Output('classification_table', 'children'), Output('structure', 'children')],
[Input('smiles_string', 'value')],
Expand Down Expand Up @@ -162,7 +163,7 @@ def handle_smiles(smiles_string):

return [table_fig, img_obj]

# This function will rerun at any
# This function will rerun at any
@app.callback(
[Output('usage_summary', 'children')],
[Input('url', 'pathname')],
Expand Down Expand Up @@ -237,16 +238,16 @@ def classify_structure(smiles):
pathway_result = []

# Voting on Answer
pathway_result, superclass_result, class_result, isglycoside = prediction_voting.vote_classification(n_path,
n_class,
n_super,
pathway_result, superclass_result, class_result, isglycoside = prediction_voting.vote_classification(n_path,
n_class,
n_super,
pred_class,
pred_super,
path_from_class,
path_from_superclass,
isglycoside,
pred_super,
path_from_class,
path_from_superclass,
isglycoside,
ontology_dictionary)

return isglycoside, class_result, superclass_result, pathway_result, path_from_class, path_from_superclass, n_path, fp1, fp2


Expand All @@ -264,7 +265,7 @@ def _process_full_classification(smiles_string):
respond_dict["superclass_results"] = superclass_results
respond_dict["pathway_results"] = pathway_results
respond_dict["isglycoside"] = isglycoside

respond_dict["fp1"] = fp1
respond_dict["fp2"] = fp2

Expand All @@ -277,7 +278,7 @@ def _process_full_classification(smiles_string):
)
except:
pass

return respond_dict


Expand Down