Skip to content

Functional Data Sets for Time Series Classification

Notifications You must be signed in to change notification settings

moviedo5/fda.tsc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Package overview

fda.tsc Functional Data Sets of UEA & UCR Time Series Classification Repository [Time Series Classification Repository](http://www.timeseriesclassification.com) adapted for using in package fda.usc. The fda.usc package implements methods for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

Installation

You can install the latest patched version from Github with:

# install.packages("devtools")
library(devtools)
devtools::install_github("moviedo5/fda.tsc")

This package contains a datasets availabe in Time Series Classification Web Page converted in fdata class objects (of packages. The vignette gives a quick introduction to the usage of the fda.tsc package.

Dependencies

The fda.tsc package depends on the fda.usc R-packages. For installation instructions, see below.

A hands on introduction to package can be found in the reference vignette.

Details on specific functions are in the reference manual, Manuel Oviedo PhD thesis Advances in functional regression and classification models

List of TSC datasets:

library("fda.tsc")
# data(package = "fda.tsc") # Shows the package dataset
d <- data(package = "fda.tsc")
## names of data sets in the package
#d$results[, "Item"]
nm <- d$results[, "Item"]
## assign it to use later 
data(list = nm, package = "fda.tsc")
# lfdata: list with the datasets
list.fdata <- mget(nm) 
#names(list.fdata)
aa<-d$results[, "Package"]
#length(aa);class(aa)
ivar <-  c("Package","Item")
tabla<-data.frame(d$results[,ivar])
names(tabla)<-ivar
tabla$ncurves <-as.numeric(unlist(lapply(seq_along(list.fdata), function(i) nrow(list.fdata[[i]]$x))))
tabla$n_argvals <- as.numeric(unlist(lapply(seq_along(list.fdata), function(i) ncol(list.fdata[[i]]$x))))
#names(tabla)
tab1 <-unlist(lapply(seq_along(list.fdata), function(i)   nlevels(list.fdata[[i]]$df[,"class"])))
tab2 <-matrix(unlist(lapply(seq_along(list.fdata), function(i)   table(list.fdata[[i]]$df[,"sample"]))),ncol=2,byrow=T)
tabla<-cbind(tabla,tab1,tab2[,2:1])
names(tabla)[5:7]<-c("nlevels","n_train","n_test")
#head(tabla)
#mapply(function(x, i) paste(i, x), x, names(x))
## call the promised data
#data(list = nm, package = "fda.tsc")
## get the dimensions of each data set
# lapply(mget(nm), dim)
 #lapply(mget(nm)[[1]], class)
#install.packages("vcdExtra")
#vcdExtra::datasets("fda.tsc")

A ver peta

Package Item ncurves n_argvals nlevels n_train n_test
fda.tsc Adiac 781 176 37 390 391
fda.tsc ArrowHead 211 251 3 36 175
fda.tsc Beef 60 470 5 30 30
fda.tsc BeetleFly 40 512 2 20 20
fda.tsc BirdChicken 40 512 2 20 20
fda.tsc CBF 930 128 3 30 900
fda.tsc Car 120 577 4 60 60
fda.tsc ChlorineConcentration 4307 166 3 467 3840
fda.tsc CinCECGtorso 1420 1639 4 40 1380
fda.tsc Coffee 56 286 2 28 28
fda.tsc Computers 500 720 2 250 250
fda.tsc DiatomSizeReduction 322 345 4 16 306
fda.tsc ECG200 200 96 2 100 100
fda.tsc ECG5000 5000 140 5 500 4500
fda.tsc ElectricDevices 16637 96 7 8926 7711
fda.tsc FaceAll 2250 131 14 560 1690
fda.tsc FaceFour 112 350 4 24 88
fda.tsc FacesUCR 2250 131 14 200 2050
fda.tsc FiftyWords 905 270 50 450 455
fda.tsc Fish 350 463 7 175 175
fda.tsc FordA 4921 500 2 3601 1320
fda.tsc FordB 4446 500 2 3636 810
fda.tsc GunPoint 200 150 2 50 150
fda.tsc Ham 214 431 2 109 105
fda.tsc HandOutlines 1370 2709 2 1000 370
fda.tsc Haptics 463 1092 5 155 308
fda.tsc Herring 128 512 2 64 64
fda.tsc InlineSkate 650 1882 7 100 550
fda.tsc InsectWingbeatSound 2200 256 11 220 1980
fda.tsc ItalyPowerDemand 1096 24 2 67 1029
fda.tsc LargeKitchenAppliances 750 720 3 375 375
fda.tsc Lightning2 121 637 2 60 61
fda.tsc Lightning7 143 319 7 70 73
fda.tsc Mallat 2400 1024 8 55 2345
fda.tsc Meat 120 448 3 60 60
fda.tsc MedicalImages 1141 99 10 381 760
fda.tsc MiddlePhalanxOutlineAgeGroup 554 80 3 400 154
fda.tsc MiddlePhalanxOutlineCorrect 891 80 2 600 291
fda.tsc MiddlePhalanxTW 553 80 6 399 154
fda.tsc MoteStrain 1272 84 2 20 1252
fda.tsc NonInvasiveFetalECGThorax1 3765 750 42 1800 1965
fda.tsc NonInvasiveFetalECGThorax2 3765 750 42 1800 1965
fda.tsc OSULeaf 442 427 6 200 242
fda.tsc PhalangesOutlinesCorrect 2658 80 2 1800 858
fda.tsc Phoneme 2110 1024 39 214 1896
fda.tsc Plane 210 144 7 105 105
fda.tsc ProximalPhalanxOutlineAgeGroup 605 80 3 400 205
fda.tsc ProximalPhalanxOutlineCorrect 891 80 2 600 291
fda.tsc ProximalPhalanxTW 605 80 6 400 205
fda.tsc RefrigerationDevices 750 720 3 375 375
fda.tsc ScreenType 750 720 3 375 375
fda.tsc ShapeletSim 200 500 2 20 180
fda.tsc ShapesAll 1200 512 60 600 600
fda.tsc SmallKitchenAppliances 750 720 3 375 375
fda.tsc SonyAIBORobotSurface1 621 70 2 20 601
fda.tsc SonyAIBORobotSurface2 980 65 2 27 953
fda.tsc Strawberry 983 235 2 613 370
fda.tsc SwedishLeaf 1125 128 15 500 625
fda.tsc Symbols 1020 398 6 25 995
fda.tsc SyntheticControl 600 60 6 300 300
fda.tsc ToeSegmentation1 268 277 2 40 228
fda.tsc ToeSegmentation2 166 343 2 36 130
fda.tsc Trace 200 275 4 100 100
fda.tsc TwoLeadECG 1162 82 2 23 1139
fda.tsc TwoPatterns 5000 128 4 1000 4000
fda.tsc UWaveGestureLibraryAll 4478 945 8 896 3582
fda.tsc UWaveGestureLibraryX 4478 315 8 896 3582
fda.tsc UWaveGestureLibraryY 4478 315 8 896 3582
fda.tsc UWaveGestureLibraryZ 4478 315 8 896 3582
fda.tsc Wafer 7164 152 2 1000 6164
fda.tsc Wine 111 234 2 57 54
fda.tsc WordSynonyms 905 270 25 267 638
fda.tsc Worms 258 900 5 181 77

Table: Time Series Classification Datasets adapted for fda.usc package

About

Functional Data Sets for Time Series Classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages