Skip to content
/ url Public

Uncertainty-aware representation learning (URL) benchmark

License

Notifications You must be signed in to change notification settings

mkirchhof/url

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pretrained Representation Uncertainties

Pretrained uncertainty-aware image representations from a ViT-Base model

This repo contains the code of two papers: URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates, and more recently Pretrained Visual Uncertainties. They bring the advantages of pretrained representations to the area of uncertainty quantification: The goal is to develop models that output pretrained zero-shot uncertainties along with every pretrained representation. This representation uncertainty gives the risk that the representation is off because, e.g., not enough image features could be detected. The general output of an uncertainty-aware pretrained representation model is

representation, uncertainty = pretrained_model(input)

The two papers share this repo because they are based on the same backbone, with Pretrained Visual Uncertainties making huge quality-of-life improvements. This includes a 180x speedup via caching, see below. For reproducibility, the original submission code of the URL benchmark can be found in the url_at_time_of_submission branch.


Installation

TL;DR: Create a conda environment with conda env create -f requirements.yml, then download the datasets.

Conda environment

Long answer: First, create a conda environment with Python 3.8.8 and PyTorch 1.13 with a CUDA backend that suits your GPU (in this case, CUDA 11.1). Then install the dependencies in the order below.

conda create --name url python=3.8.17
conda activate url
pip install tensorflow tensorflow-datasets tensorflow-addons opencv-python-headless
conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.7 faiss-gpu -c pytorch -c nvidia
pip install matplotlib pyyaml huggingface_hub safetensors>=0.2 scipy argparse==1.4.0 tueplots==0.0.10 wandb==0.13.5 torchmetrics==0.11.3 scikit-learn==0.24.1 pandas==1.2.4 chardet==5.2.0
conda install mkl=2021

Datasets

Now, download all datasets you want to train or zero-shot test on. The scripts search for them by default under ./data. You can adjust this via the arguments --data-dir for the upstream (ImageNet-21k) dataset and --data-dir-downstream for the zero-shot downstream datasets. If your downstream datasets are spread over multiple directories, consider providing one folder that gives symlinks to them.

Upstream datasets: ImageNet-1k or ImageNet-21k. For ImageNet-21k, download the Winter-2021 version of imagenet.

Downstream datasets for URL benchmark: CUB200-211, CARS196, Stanford Online Products

Further downstream datasets: CIFAR-10H, Treeversity#1 and datasets from VTAB. VTAB datasets are automatically downloaded from tensorflow datasets upon first use. For some datasets, tensorflow might throw instructions on how to manually download them.

Please verify that your folder structure for the downstream datasets looks like this (note the folder names for each dataset):

cub
└───images
|    └───BMW 3 Series Wagon 2012
|           │   00039.jpg
|           │   ...
|    ...
cars
└───images
|    └───001.Black_footed_Albatross
|           │   Black_Footed_Albatross_0001_796111.jpg
|           │   ...
|    ...
online_products
└───images
|    └───bicycle_final
|           │   111085122871_0.jpg
|    ...
|
└───Info_Files
|    │   bicycle.txt
|    │   ...

The further downstream datasets should look like this directly after unzipping

CIFAR10H/Treeversity#1
└───fold1
|    │   182586_00.png
|    ...
└───annotations.json

Training and Benchmarking your own Method

Training happens in train.py. This is adapted from the timm library, including all its models, to which we added various uncertainty output methods, so that all models have outputs of the form class_logits, uncertainties, embeddings = model(input). The best starting point to implement your own ideas would be to adapt the uncertainty output methods in ./timm/models/layers/_uncertainizer.py, implement losses in ./timm/loss, or enhance model architectures in ./timm/models.

An exemplary call to train a ViT-Base on ImageNet-21k and evaluate its uncertainties on the zero-shot datasets CUB, CARS, and SOP would be

train.py --model=vit_base_patch16_224.augreg_in21k --dataset-downstream=[repr/cub, repr/cars, repr/sop] --initial-checkpoint vit_base_checkpoint.pth.tar

If you only want to zero-shot validate without training, setting --lr-base=0 will skip training epochs. If you want to also check the test splits, add --test_split=test.

The most important parameters are:

  • --model Which backbone to use. vit_base_patch16_224.augreg_in21k is for ImageNet-21k. Popular choices for ImageNet-1k would be resnet50 or vit_medium_patch16_gap_256.
  • --dataset-downstream List of zero-shot datasets you'd like to evaluate on. Turned off by default to save runtime when only training. In the paper we use: [repr/cub, repr/cars, repr/sop, soft/cifar, soft/treeversity1, vtab/caltech101, vtab/cifar100, vtab/dtd, vtab/oxford_flowers102, vtab/oxford_iiit_pet, vtab/resisc45, vtab/sun397, vtab/svhn].
  • --initial-checkpoint The script saves checkpoints every epoch. You can provide the path to start from one here. E.g., you can download the ones we pretrained in the Pretrained Visual Uncertainties paper from Google Drive
  • --epochs Number of epochs to train for on the upstream dataset. Since we automatically start from pretrained checkpoints, this is set to 32 by default.
  • --iters_instead_of_epochs For larger datasets, use this amount of images as one epoch, so that we validate more often. Default is 200000, so we do not use standard epochs by default.
  • --test_split By default None to skip testing on test data (only on validation data, since --val_split=validation by default). Set to test if you want to calculate results for your final paper.
  • --loss Which loss to use. We use our paper's losspred-order by default. Note that some approaches, like MCDropout, use a cross-entropy loss, but specify other parameters to make them into their own loss. Please refer to the example codes below.
  • --inv_temp The hyperparameter constant the distances in the softmax exponentials are multiplied by. This can also be understood as the inverse of the temperature. Some approaches require further hyperparameters. Please refer to the example codes below.
  • --unc-module How to calculate the uncertainty attached to each embedding. Popular choices are an explicit pred-net module attached to the model or the class-entropy of the predicted upstream class label distribution. These uncertainty modules are implemented as wrappers around the models, so that any combination of model backbone and uncertainty method should work.
  • --unc_width If --unc-module=pred-net, this gives the width of the 2-layer MLP to estimate uncertainties.
  • --ssl Set to False if you want to learn with supervised labels and to True if you want to learn from self-supervised contrastive pairs. Note that these result in different data formats, such that not all losses are compatible with all settings. Please refer to the example codes below.
  • --warmup-lr The fixed learning rate to use in the first epoch. Usually lower than the learning rate in later epochs.
  • --lr-base The learning rate in reference to a batchsize of 256. This will be increased/decreased automatically if you use a smaller or bigger total batchsize. The current learning rate will be printed in the log.
  • --sched Which learning rate scheduler to use. In the paper we use cosine annealing, but you may want to try out step.
  • --batch-size How many samples to process at the same time.
  • --accumulation_steps How many batches to calculate before making one optimizer step. The accumulation steps times the batch size gives the final, effective batchsize. Loss scalers adjust to this automatically.
  • --seed For final results, we replicate each experiment on the seeds ```1, 2, 3, 4, 5``
  • --eval-metric Which metric to select the best epoch checkpoint by. We use avg_downstream_auroc_correct for the R-AUROC averaged across all downstream validation sets. These options here are the internal keys of the results dictionaries, as further detailed below. Keep in mind that the an eval_ is prepended to the metric name internally, as we only allow to use metrics on the valiation splits to be used as eval-metric.
  • --log-wandb We recommend to set this to True to log your results in W&B. Don't forget to login with your API key.
  • --data-dir Folder where ImageNet, or in general your upstream dataset, is stored.
  • --data-dir-eval Folder where your eval dataset is stored (if None, the default is to use your upstream dataset from --data-dir)
  • --data-dir-downstream Folder where all CUB200, CARS196, SOP, CIFAR10H, ..., are stored, or whichever downstream and further downstream datasets you use.

Metrics

TL;DR: The R@1 and R-AUROC metrics reported in the paper are internally named best_test_avg_downstream_r1 and best_test_avg_downstream_auroc_correct. During hyperparameter tuning, please use them on their validation sets, i.e., best_eval_avg_downstream_r1 and best_eval_avg_downstream_auroc_correct.

Long answer: All metrics are named as follows:

<best/current epoch>_<dataset>_<metric>

, e.g., best_eval_avg_downstream_auroc_correct or eval_r1.

  • <best/current epoch> We prepend a best_ if the metric is computed on the best so-far epoch. The best epoch is chosen via --eval-metric, see above. If nothing is prepended, this is just the metric of the current epoch.
  • <dataset> gives which dataset and eval/test split the metric is computed on. Options are
    • eval The validation set given in --dataset_eval, which is usually just the same as the upstream loader, i.e., torch/imagenet or soft/imagenet.
    • eval_avg_downstream The average across the validation sets of all downstream loaders. They are defined via --dataset-downstream.
    • test_avg_downstream The average across the test sets of all downstream loaders. They are defined via --dataset-downstream.
    • furthertest_avg_downstream The average across the test sets of all "further" downstream loaders. They are defined via --further-dataset-downstream. This is essentially just a second set of datasets to test on.
    • eval_repr/cub, test_repr/cub, furthertest_soft/benthic, ..., The results on each individual dataset. This is done for all datasets in --dataset-downstream and --further-dataset-downstream.
  • <metric> Which metric we evaluate:
    • auroc_correct This is the R-AUROC from the paper main text. This is the main metric we focus on.
    • r1 The R@1 from the paper main text. This is the second most important metric.
    • top1 and top5 The top-1 and top-5 accuracy of the classifier. This only makes sense on the upstream dataset (it is output aswell for downstream datasets just for modularity reasons).
    • auroc_correct_mixed This is the R-AUROC on a 50/50 mixture of the upstream and the respective downstream dataset. Used in the Appendix.
    • auroc_ood This is the AUROC on whether images from the upstream eval dataset (ID) and downstream dataset (OOD) can be told apart based on the uncertainty value. Used in the Appendix.
    • croppedHasBiggerUnc How often a cropped version of an image has a higher uncertainty than the original version.
    • rcorr_crop_unc Rank correlation between how much we cropped an image and high uncertainty the model outputs. Use with care! This is only implemented in reference to previous works. This metric only makes sense if all images show a single object, such that the amount of cropping has a roughly equal effect across all images. croppedHasBiggerUnc fixes this issue and should be preferred.
    • rcorr_entropy The rank correlation with the entropy of human soft label distributions. Only available for soft/... datasets.
    • min_unc, avg_unc, and max_unc The minimum, average, and maximum uncertainties across the dataset.

Caching everything

If you want to experiment multiple times and only train an uncertainty module for an otherwise pretrained and frozen backbone, it makes sense to cache all epochs (all images, random augmentations, targets) once and then load only the cached representations. This speeds up training by ~180x and reduces your compute's CO2 footprint accordingly.

This caching happens in create_cached_dataset.py. Its arguments are the same as for train.py. It will output an HDF5 dataset of cached representations and class labels to the ./cached_datasets directory. You can then load this dataset in train.py via --dataset=hdf5/... where ... is the folder name your dataset is stored under. The dataloaders and models will automatically skip the backbone upon detecting HDF5 datasets.


Examples

Below are the calls to reproduce the URL benchmark results on all ten baseline approaches and for Pretrained Visual Uncertainties, both on ResNet and ViT backbones. They all use the best hyperparameters we found in our searches. All approaches in the paper were repeated on seeds 1, 2, and 3, which we do not show here for brevity.

Pretrained Visual Uncertainties

The ViTs-{Tiny,Small,Base,Large} from Pretrained Visual Uncertainties are trained as shown below. Their final checkpoints are available on Google Drive

train.py --model=vit_base_patch16_224.augreg_in21k --loss=losspred-order --dataset=folder/imagenet21k lr-base=0.001 --img-size=224
train.py --model=vit_large_patch16_224.augreg_in21k --loss=losspred-order --dataset=folder/imagenet21k lr-base=0.001 --img-size=224
train.py --model=vit_tiny_patch16_224.augreg_in21k --loss=losspred-order --dataset=folder/imagenet21k lr-base=0.001 --img-size=224
train.py --model=vit_small_patch16_224.augreg_in21k --loss=losspred-order --dataset=folder/imagenet21k lr-base=0.001 --img-size=224

Non-isotropic von Mises Fisher (nivMF)

train.py --loss=nivmf --model=resnet50 --inv_temp=10.896111351193488 --lr-base=0.00014942909398367403 --unc_start_value=0.001 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb  --dataset=torch/imagenet --unc_width=1024 --unc_depth=3
train.py --loss=nivmf --model=vit_medium_patch16_gap_256 --img-size=256 --inv_temp=31.353232263344143 --lr-base=0.0027583475549166764  --unc_start_value=0.001 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3

MCInfoNCE

MCInfoNCE requires --ssl=True, and a lower batchsize, since we forward two self-supervised crops per image. The MC sampling MCInfoNCE adds over InfoNCE did not significantly impact runtime or memory usage.

train.py --loss=mcinfonce --model=resnet50 --ssl=True --accumulation_steps=21 --batch-size=96 --inv_temp=52.43117045513681 --lr-base=2.384205225724591e-05 --unc_start_value=0.001 --warmup-lr=3.487706876306753e-05 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3
train.py --loss=mcinfonce --model=vit_medium_patch16_gap_256 --ssl=True --accumulation_steps=21 --batch-size=96 --img-size=256 --inv_temp=50.27568453131382 --lr-base=0.0031866603949435874 --unc_start_value=0.001 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3

Expected Likelihood Kernel (ELK)

train.py --loss=elk --model=resnet50 --inv_temp=27.685357549319253  --lr-base=0.008324452068209802 --unc-module=pred-net --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3
train.py --loss=elk --model=vit_medium_patch16_gap_256 --img-size=256 --inv_temp=56.77356863558765 --lr-base=0.009041687325778511  --unc-module=pred-net --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3

Heteroscedastic Classifiers (HET-XL)

HET-XL uses several hyperparameters, see the args in train.py, most importantly the --rank_V of the covariance matrix and --c-mult. HET-XL uses a standard cross-entropy loss, but a modified architecture, which you call via the --model argument. We've implemented this only for ResNet 50 and ViT Medium. It can also use either its covariance determinant or class entropy as --unc-module. In our experiments, the latter outperformed the former.

train.py --loss=cross-entropy --model=resnet50hetxl --c-mult=0.011311824684149863 --inv_temp=28.764754827923134 --lr-base=0.00030257136041070065 --rank_V=1 --unc-module=class-entropy --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet
train.py --loss=cross-entropy --model=vit_medium_patch16_gap_256hetxl --c-mult=0.011586882497402008 --img-size=256 --inv_temp=21.601079237861356 --lr-base=0.00012722151293115814 --rank_V=1 --unc-module=hetxl-det --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet

Loss Prediction (Losspred)

Riskpred uses the --lambda-value hyperparameter to balance its cross entropy and uncertainty prediction loss.

train.py --loss=riskpred --model=resnet50 --lambda-value=0.04137484664752506 --lr-base=0.00907673293373138 --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3
train.py --loss=riskpred --model=vit_medium_patch16_gap_256 --img-size=256 --lambda-value=0.011424752423322174 --lr-base=0.0026590263551453507 --unc-module=pred-net --unc_start_value=0.001 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3

Spectral-normalized Neural Gaussian Processes (SNGP/GP)

SNGP has mutiple hyperparameters. Our implementation follows the defaults of the original paper. Most importantly, --use-spec-norm controls whether to use SNGP or drop the SN and only use GP. Like HET-XL, SNGP is called via a modified model architecture and otherwise uses a standard cross entropy loss.

train.py --loss=cross-entropy --model=resnet50sngp --gp-cov-discount-factor=-1 --gp-input-normalization=True --lr-base=0.003935036929170965 --spec-norm-bound=3.0034958778109893 --unc-module=class-entropy --unc_start_value=0 --use-spec-norm=True --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet
train.py --loss=cross-entropy --model=vit_medium_patch16_gap_256sngp --gp-cov-discount-factor=0.999 --gp-input-normalization=True --img-size=256 --lr-base=0.0002973866135608272 --spec-norm-bound=2.0072013733952883 --unc-module=class-entropy --unc_start_value=0 --use-spec-norm=False --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet

Hedged Instance Embeddings (HIB)

HIB has an additional hyperparameter --hib_add_const to shift its sigmoid. HIB requires lower batchsizes to prevent running out of VRAM.

train.py --loss=hib --model=resnet50 --accumulation_steps=21 --batch-size=96 --hib_add_const=2.043464396656407 --inv_temp=26.850376086478832 --lr-base=5.606607236666466e-05 --unc_start_value=0 --warmup-lr=2.2864937540918197e-06 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3
train.py --loss=hib --model=vit_medium_patch16_gap_256 --accumulation_steps=43 --batch-size=48 --hib_add_const=-5.360730528719454 --img-size=256 --inv_temp=13.955844954616405 --lr-base=0.0005920448270870512 --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet --unc_width=1024 --unc_depth=3

MCDropout

Specify the number of MC samples to take via --num-heads and the dropout rate via --drop.

train.py --loss=cross-entropy --model=resnet50dropout --drop=0.08702220252645132 --inv_temp=29.31590841184109 --lr-base=0.00016199535513680024 --unc-module=jsd --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet
train.py --loss=cross-entropy --model=vit_medium_patch16_gap_256dropout --drop=0.1334044009405148 --img-size=256 --inv_temp=57.13603169495254 --lr-base=0.0027583475549166764 --unc-module=class-entropy --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet

Ensemble

Specify the number heads via --num-heads. This increases memory and computation usage.

train.py --loss=cross-entropy --model=resnet50 --inv_temp=29.89825063351814 --lr-base=0.004405890102835956 --num-heads=10 --unc-module=class-entropy --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet
train.py --loss=cross-entropy --model=vit_medium_patch16_gap_256 --img-size=256 --inv_temp=54.435826404570726 --lr-base=0.004944771531139904 --num-heads=10 --unc-module=class-entropy --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet

Cross Entropy

train.py --loss=cross-entropy --model=resnet50 --inv_temp=31.353232263344143 --lr-base=0.0027583475549166764 --unc-module=class-entropy --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet
train.py --loss=cross-entropy --model=vit_medium_patch16_gap_256 --img-size=256 --inv_temp=60.70635770117517 --lr-base=0.004954014361368407 --unc-module=class-entropy --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet

InfoNCE

InfoNCE requires --ssl=True, and a lower batchsize, since we forward two self-supervised crops per image.

train.py --loss=infonce --model=resnet50 --ssl=True --accumulation_steps=21 --batch-size=96 --inv_temp=15.182859908025058 --lr-base=0.0004452562693472003 --unc-module=embed-norm --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet
train.py --loss=infonce --model=vit_medium_patch16_gap_256 --ssl=True --accumulation_steps=21 --batch-size=96 --img-size=256 --inv_temp=20.82011649785067 --lr-base=0.006246538808281836 --unc-module=embed-norm --unc_start_value=0 --freeze_backbone=false --freeze_classifier=false --epochs=32 --iters_instead_of_epochs=0 --stopgrad=false --opt=lamb --dataset=torch/imagenet

Licenses

Code

This repo bases largely on timm (Apache 2.0), with some dataloaders from Revisiting Deep Metric Learning (MIT Licence) and VTAB (Apache 2.0), and some methods from Probabilistic Contrastive Learning (MIT License). Several further methods are (re-)implemented by ourselves. Overall, this repo is thus under an Apache 2.0 License. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, the sources/references for various components are linked in docstrings.

Pretrained Weights

So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product.

Pretrained on more than ImageNet

Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.


Citing

To cite the pretrained visual uncertainties models, use

@article{kirchhof2024pretrained,
      title={Pretrained Visual Uncertainties}, 
      author={Michael Kirchhof and Mark Collier and Seong Joon Oh and Enkelejda Kasneci},
      journal={arXiv preprint arXiv:2402.16569},
      year={2024}
}

To cite the URL benchmark, use

@article{kirchhof2023url,
  title={URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates},
  author={Michael Kirchhof and Bálint Mucsányi and Seong Joon Oh and Enkelejda Kasneci},
  journal={Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks},
  year={2023}
}

If you use the benchmark, please also cite the datasets it uses.


Disclaimer: This is not an officially supported Google product.

About

Uncertainty-aware representation learning (URL) benchmark

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published