Skip to content

mikodham/football4life

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Football Team Foul Detection

Intro to Deep Learning Project CS492, Fall 2021, KAIST.

Game Dataset

To install dataset, run Dataset/download_Soccernet.py and auto_trim.py

In each game folder, / Dataset/SoccerNet / trim_dir / league / year / match

  • '1_field_calib_ccbv.json',
  • '1_HQ.mkv', => First Half, Full Match
  • '1_player_boundingbox_maskrcnn.json', => RCNN Prediction from Giancos's data, 1st Half
  • '1_ResNET_TF2.npy',
  • '1_ResNET_TF2_PCA512.npy', => After PCA
  • '2_field_calib_ccbv.json',
  • '2_HQ.mkv',
  • '2_player_boundingbox_maskrcnn.json',
  • '2_ResNET_TF2.npy',
  • '2_ResNET_TF2_PCA512.npy',
  • 'annotator.txt',
  • 'Foul', => Trimmed Videos of Foul
  • 'Labels-cameras.json', => Containing camera view(Close up player/main referee, Main Camera), time
  • 'Labels-captioning.json', => Match Commentary, inaccurate
  • 'Labels-v2.json', => Containing all events(kick-off, foul, card, etc) and which team commiting the events
  • 'Labels.json', => Containing Events (Kickoff, Card, End of Match, Substitution) only
  • 'labels_event.json', => Containing Foul, Yellow and Red card and Which team commits the foul
  • 'Red card', => Trimmed Videos for Red Card
  • 'video.ini', => Details about 1_HQ.mkv and 2_HQ.mkv
  • 'video_with_duration.ini', => Details about 1_HQ.mkv and 2_HQ.mkv
  • 'Yellow card' => Trimmed Videos of Yellow Card

About

DL Fall 2021

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages