Skip to content

Commit

Permalink
reorganize the cli codes
Browse files Browse the repository at this point in the history
  • Loading branch information
yanghan-microsoft committed Dec 27, 2024
1 parent 1f4365b commit 9fbcc5c
Show file tree
Hide file tree
Showing 6 changed files with 399 additions and 260 deletions.
Empty file added src/mattersim/cli/__init__.py
Empty file.
Empty file.
142 changes: 142 additions & 0 deletions src/mattersim/cli/applications/phonon.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
import os
import uuid
from collections import defaultdict
from typing import List

import numpy as np
import pandas as pd
import yaml
from ase import Atoms
from loguru import logger
from pymatgen.core.structure import Structure
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm

from mattersim.applications.phonon import PhononWorkflow
from mattersim.cli.applications.relax import relax


def phonon(
atoms_list: List[Atoms],
*,
find_prim: bool = False,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
amplitude: float = 0.01,
supercell_matrix: np.ndarray = None,
qpoints_mesh: np.ndarray = None,
max_atoms: int = None,
enable_relax: bool = False,
**kwargs,
) -> dict:
"""
Predict phonon properties for a list of atoms.
Args:
atoms_list (List[Atoms]): List of ASE Atoms objects.
find_prim (bool, optional): If find the primitive cell and use it
to calculate phonon. Default to False.
work_dir (str, optional): workplace path to contain phonon result.
Defaults to data + chemical_symbols + 'phonon'
amplitude (float, optional): Magnitude of the finite difference to
displace in force constant calculation, in Angstrom. Defaults
to 0.01 Angstrom.
supercell_matrix (nd.array, optional): Supercell matrix for constr
-uct supercell, priority over than max_atoms. Defaults to None.
qpoints_mesh (nd.array, optional): Qpoint mesh for IBZ integral,
priority over than max_atoms. Defaults to None.
max_atoms (int, optional): Maximum atoms number limitation for the
supercell generation. If not set, will automatic generate super
-cell based on symmetry. Defaults to None.
enable_relax (bool, optional): Whether to relax the structure before
predicting phonon properties. Defaults to False.
"""
phonon_results = defaultdict(list)

for atoms in tqdm(
atoms_list, total=len(atoms_list), desc="Predicting phonon properties"
):
if enable_relax:
relaxed_results = relax(
[atoms],
constrain_symmetry=True,
work_dir=work_dir,
save_csv=save_csv.replace(".csv", "_relax.csv"),
)
structure = Structure.from_str(relaxed_results["structure"][0], fmt="json")
_atoms = AseAtomsAdaptor.get_atoms(structure)
_atoms.calc = atoms.calc
atoms = _atoms
ph = PhononWorkflow(
atoms=atoms,
find_prim=find_prim,
work_dir=work_dir,
amplitude=amplitude,
supercell_matrix=supercell_matrix,
qpoints_mesh=qpoints_mesh,
max_atoms=max_atoms,
)
has_imaginary, phonon = ph.run()
phonon_results["has_imaginary"].append(has_imaginary)
# phonon_results["phonon"].append(phonon)
phonon_results["phonon_band_plot"].append(
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_band.png")
)
phonon_results["phonon_dos_plot"].append(
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_dos.png")
)
os.rename(
os.path.join(os.path.abspath(work_dir), "band.yaml"),
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml"),
)
os.rename(
os.path.join(os.path.abspath(work_dir), "phonopy_params.yaml"),
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_phonopy_params.yaml"
),
)
os.rename(
os.path.join(os.path.abspath(work_dir), "total_dos.dat"),
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat"),
)
phonon_results["phonon_band"].append(
yaml.safe_load(
open(
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml"
),
"r",
)
)
)
phonon_results["phonopy_params"].append(
yaml.safe_load(
open(
os.path.join(
os.path.abspath(work_dir),
f"{atoms.symbols}_phonopy_params.yaml",
),
"r",
)
)
)
phonon_results["total_dos"].append(
np.loadtxt(
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat"
),
comments="#",
)
)

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")
df = pd.DataFrame(phonon_results)
df.to_csv(
os.path.join(work_dir, save_csv.replace(".csv", "_phonon.csv")),
index=False,
mode="a",
)
return phonon_results
98 changes: 98 additions & 0 deletions src/mattersim/cli/applications/relax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
import os
import uuid
from collections import defaultdict
from typing import List, Union

import pandas as pd
from ase import Atoms
from ase.constraints import Filter
from ase.optimize.optimize import Optimizer
from ase.units import GPa
from loguru import logger
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm

from mattersim.applications.relax import Relaxer


def relax(
atoms_list: List[Atoms],
*,
optimizer: Union[str, Optimizer] = "FIRE",
filter: Union[str, Filter, None] = None,
constrain_symmetry: bool = False,
fix_axis: Union[bool, List[bool]] = False,
pressure_in_GPa: float = None,
fmax: float = 0.01,
steps: int = 500,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
**kwargs,
) -> dict:
"""
Relax a list of atoms structures.
Args:
atoms_list (List[Atoms]): List of ASE Atoms objects.
optimizer (Union[str, Optimizer]): The optimizer to use. Default is "FIRE".
filter (Union[str, Filter, None]): The filter to use.
constrain_symmetry (bool): Whether to constrain symmetry. Default is False.
fix_axis (Union[bool, List[bool]]): Whether to fix the axis. Default is False.
pressure_in_GPa (float): Pressure in GPa to use for relaxation.
fmax (float): Maximum force tolerance for relaxation. Default is 0.01.
steps (int): Maximum number of steps for relaxation. Default is 500.
work_dir (str): Working directory for the calculations.
Default is a UUID with timestamp.
save_csv (str): Save the results to a CSV file. Default is `results.csv.gz`.
Returns:
pd.DataFrame: DataFrame containing the relaxed results.
"""
params_filter = {}

if pressure_in_GPa:
params_filter["scalar_pressure"] = (
pressure_in_GPa * GPa
) # convert GPa to eV/Angstrom^3
filter = "ExpCellFilter" if filter is None else filter
elif filter:
params_filter["scalar_pressure"] = 0.0

relaxer = Relaxer(
optimizer=optimizer,
filter=filter,
constrain_symmetry=constrain_symmetry,
fix_axis=fix_axis,
)

relaxed_results = defaultdict(list)
for atoms in tqdm(atoms_list, total=len(atoms_list), desc="Relaxing structures"):
converged, relaxed_atoms = relaxer.relax(
atoms,
params_filter=params_filter,
fmax=fmax,
steps=steps,
)
relaxed_results["converged"].append(converged)
relaxed_results["structure"].append(
AseAtomsAdaptor.get_structure(relaxed_atoms).to_json()
)
relaxed_results["energy"].append(relaxed_atoms.get_potential_energy())
relaxed_results["energy_per_atom"].append(
relaxed_atoms.get_potential_energy() / len(relaxed_atoms)
)
relaxed_results["forces"].append(relaxed_atoms.get_forces())
relaxed_results["stress"].append(relaxed_atoms.get_stress(voigt=False))
relaxed_results["stress_GPa"].append(
relaxed_atoms.get_stress(voigt=False) / GPa
)

logger.info(f"Relaxed structure: {relaxed_atoms}")

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")
df = pd.DataFrame(relaxed_results)
df.to_csv(os.path.join(work_dir, save_csv), index=False, mode="a")
return relaxed_results
46 changes: 46 additions & 0 deletions src/mattersim/cli/applications/singlepoint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
import os
import uuid
from collections import defaultdict
from typing import List

import pandas as pd
from ase import Atoms
from ase.units import GPa
from loguru import logger
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm


def singlepoint(
atoms_list: List[Atoms],
*,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
**kwargs,
) -> dict:
"""
Predict single point properties for a list of atoms.
"""
logger.info("Predicting single point properties.")
predicted_properties = defaultdict(list)
for atoms in tqdm(
atoms_list, total=len(atoms_list), desc="Predicting single point properties"
):
predicted_properties["structure"].append(AseAtomsAdaptor.get_structure(atoms))
predicted_properties["energy"].append(atoms.get_potential_energy())
predicted_properties["energy_per_atom"].append(
atoms.get_potential_energy() / len(atoms)
)
predicted_properties["forces"].append(atoms.get_forces())
predicted_properties["stress"].append(atoms.get_stress(voigt=False))
predicted_properties["stress_GPa"].append(atoms.get_stress(voigt=False) / GPa)

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")

df = pd.DataFrame(predicted_properties)
df.to_csv(os.path.join(work_dir, save_csv), index=False, mode="a")
return predicted_properties
Loading

0 comments on commit 9fbcc5c

Please sign in to comment.