-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1f4365b
commit 9fbcc5c
Showing
6 changed files
with
399 additions
and
260 deletions.
There are no files selected for viewing
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
import os | ||
import uuid | ||
from collections import defaultdict | ||
from typing import List | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import yaml | ||
from ase import Atoms | ||
from loguru import logger | ||
from pymatgen.core.structure import Structure | ||
from pymatgen.io.ase import AseAtomsAdaptor | ||
from tqdm import tqdm | ||
|
||
from mattersim.applications.phonon import PhononWorkflow | ||
from mattersim.cli.applications.relax import relax | ||
|
||
|
||
def phonon( | ||
atoms_list: List[Atoms], | ||
*, | ||
find_prim: bool = False, | ||
work_dir: str = str(uuid.uuid4()), | ||
save_csv: str = "results.csv.gz", | ||
amplitude: float = 0.01, | ||
supercell_matrix: np.ndarray = None, | ||
qpoints_mesh: np.ndarray = None, | ||
max_atoms: int = None, | ||
enable_relax: bool = False, | ||
**kwargs, | ||
) -> dict: | ||
""" | ||
Predict phonon properties for a list of atoms. | ||
Args: | ||
atoms_list (List[Atoms]): List of ASE Atoms objects. | ||
find_prim (bool, optional): If find the primitive cell and use it | ||
to calculate phonon. Default to False. | ||
work_dir (str, optional): workplace path to contain phonon result. | ||
Defaults to data + chemical_symbols + 'phonon' | ||
amplitude (float, optional): Magnitude of the finite difference to | ||
displace in force constant calculation, in Angstrom. Defaults | ||
to 0.01 Angstrom. | ||
supercell_matrix (nd.array, optional): Supercell matrix for constr | ||
-uct supercell, priority over than max_atoms. Defaults to None. | ||
qpoints_mesh (nd.array, optional): Qpoint mesh for IBZ integral, | ||
priority over than max_atoms. Defaults to None. | ||
max_atoms (int, optional): Maximum atoms number limitation for the | ||
supercell generation. If not set, will automatic generate super | ||
-cell based on symmetry. Defaults to None. | ||
enable_relax (bool, optional): Whether to relax the structure before | ||
predicting phonon properties. Defaults to False. | ||
""" | ||
phonon_results = defaultdict(list) | ||
|
||
for atoms in tqdm( | ||
atoms_list, total=len(atoms_list), desc="Predicting phonon properties" | ||
): | ||
if enable_relax: | ||
relaxed_results = relax( | ||
[atoms], | ||
constrain_symmetry=True, | ||
work_dir=work_dir, | ||
save_csv=save_csv.replace(".csv", "_relax.csv"), | ||
) | ||
structure = Structure.from_str(relaxed_results["structure"][0], fmt="json") | ||
_atoms = AseAtomsAdaptor.get_atoms(structure) | ||
_atoms.calc = atoms.calc | ||
atoms = _atoms | ||
ph = PhononWorkflow( | ||
atoms=atoms, | ||
find_prim=find_prim, | ||
work_dir=work_dir, | ||
amplitude=amplitude, | ||
supercell_matrix=supercell_matrix, | ||
qpoints_mesh=qpoints_mesh, | ||
max_atoms=max_atoms, | ||
) | ||
has_imaginary, phonon = ph.run() | ||
phonon_results["has_imaginary"].append(has_imaginary) | ||
# phonon_results["phonon"].append(phonon) | ||
phonon_results["phonon_band_plot"].append( | ||
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_band.png") | ||
) | ||
phonon_results["phonon_dos_plot"].append( | ||
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_dos.png") | ||
) | ||
os.rename( | ||
os.path.join(os.path.abspath(work_dir), "band.yaml"), | ||
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml"), | ||
) | ||
os.rename( | ||
os.path.join(os.path.abspath(work_dir), "phonopy_params.yaml"), | ||
os.path.join( | ||
os.path.abspath(work_dir), f"{atoms.symbols}_phonopy_params.yaml" | ||
), | ||
) | ||
os.rename( | ||
os.path.join(os.path.abspath(work_dir), "total_dos.dat"), | ||
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat"), | ||
) | ||
phonon_results["phonon_band"].append( | ||
yaml.safe_load( | ||
open( | ||
os.path.join( | ||
os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml" | ||
), | ||
"r", | ||
) | ||
) | ||
) | ||
phonon_results["phonopy_params"].append( | ||
yaml.safe_load( | ||
open( | ||
os.path.join( | ||
os.path.abspath(work_dir), | ||
f"{atoms.symbols}_phonopy_params.yaml", | ||
), | ||
"r", | ||
) | ||
) | ||
) | ||
phonon_results["total_dos"].append( | ||
np.loadtxt( | ||
os.path.join( | ||
os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat" | ||
), | ||
comments="#", | ||
) | ||
) | ||
|
||
if not os.path.exists(work_dir): | ||
os.makedirs(work_dir) | ||
|
||
logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}") | ||
df = pd.DataFrame(phonon_results) | ||
df.to_csv( | ||
os.path.join(work_dir, save_csv.replace(".csv", "_phonon.csv")), | ||
index=False, | ||
mode="a", | ||
) | ||
return phonon_results |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
import os | ||
import uuid | ||
from collections import defaultdict | ||
from typing import List, Union | ||
|
||
import pandas as pd | ||
from ase import Atoms | ||
from ase.constraints import Filter | ||
from ase.optimize.optimize import Optimizer | ||
from ase.units import GPa | ||
from loguru import logger | ||
from pymatgen.io.ase import AseAtomsAdaptor | ||
from tqdm import tqdm | ||
|
||
from mattersim.applications.relax import Relaxer | ||
|
||
|
||
def relax( | ||
atoms_list: List[Atoms], | ||
*, | ||
optimizer: Union[str, Optimizer] = "FIRE", | ||
filter: Union[str, Filter, None] = None, | ||
constrain_symmetry: bool = False, | ||
fix_axis: Union[bool, List[bool]] = False, | ||
pressure_in_GPa: float = None, | ||
fmax: float = 0.01, | ||
steps: int = 500, | ||
work_dir: str = str(uuid.uuid4()), | ||
save_csv: str = "results.csv.gz", | ||
**kwargs, | ||
) -> dict: | ||
""" | ||
Relax a list of atoms structures. | ||
Args: | ||
atoms_list (List[Atoms]): List of ASE Atoms objects. | ||
optimizer (Union[str, Optimizer]): The optimizer to use. Default is "FIRE". | ||
filter (Union[str, Filter, None]): The filter to use. | ||
constrain_symmetry (bool): Whether to constrain symmetry. Default is False. | ||
fix_axis (Union[bool, List[bool]]): Whether to fix the axis. Default is False. | ||
pressure_in_GPa (float): Pressure in GPa to use for relaxation. | ||
fmax (float): Maximum force tolerance for relaxation. Default is 0.01. | ||
steps (int): Maximum number of steps for relaxation. Default is 500. | ||
work_dir (str): Working directory for the calculations. | ||
Default is a UUID with timestamp. | ||
save_csv (str): Save the results to a CSV file. Default is `results.csv.gz`. | ||
Returns: | ||
pd.DataFrame: DataFrame containing the relaxed results. | ||
""" | ||
params_filter = {} | ||
|
||
if pressure_in_GPa: | ||
params_filter["scalar_pressure"] = ( | ||
pressure_in_GPa * GPa | ||
) # convert GPa to eV/Angstrom^3 | ||
filter = "ExpCellFilter" if filter is None else filter | ||
elif filter: | ||
params_filter["scalar_pressure"] = 0.0 | ||
|
||
relaxer = Relaxer( | ||
optimizer=optimizer, | ||
filter=filter, | ||
constrain_symmetry=constrain_symmetry, | ||
fix_axis=fix_axis, | ||
) | ||
|
||
relaxed_results = defaultdict(list) | ||
for atoms in tqdm(atoms_list, total=len(atoms_list), desc="Relaxing structures"): | ||
converged, relaxed_atoms = relaxer.relax( | ||
atoms, | ||
params_filter=params_filter, | ||
fmax=fmax, | ||
steps=steps, | ||
) | ||
relaxed_results["converged"].append(converged) | ||
relaxed_results["structure"].append( | ||
AseAtomsAdaptor.get_structure(relaxed_atoms).to_json() | ||
) | ||
relaxed_results["energy"].append(relaxed_atoms.get_potential_energy()) | ||
relaxed_results["energy_per_atom"].append( | ||
relaxed_atoms.get_potential_energy() / len(relaxed_atoms) | ||
) | ||
relaxed_results["forces"].append(relaxed_atoms.get_forces()) | ||
relaxed_results["stress"].append(relaxed_atoms.get_stress(voigt=False)) | ||
relaxed_results["stress_GPa"].append( | ||
relaxed_atoms.get_stress(voigt=False) / GPa | ||
) | ||
|
||
logger.info(f"Relaxed structure: {relaxed_atoms}") | ||
|
||
if not os.path.exists(work_dir): | ||
os.makedirs(work_dir) | ||
|
||
logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}") | ||
df = pd.DataFrame(relaxed_results) | ||
df.to_csv(os.path.join(work_dir, save_csv), index=False, mode="a") | ||
return relaxed_results |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
import os | ||
import uuid | ||
from collections import defaultdict | ||
from typing import List | ||
|
||
import pandas as pd | ||
from ase import Atoms | ||
from ase.units import GPa | ||
from loguru import logger | ||
from pymatgen.io.ase import AseAtomsAdaptor | ||
from tqdm import tqdm | ||
|
||
|
||
def singlepoint( | ||
atoms_list: List[Atoms], | ||
*, | ||
work_dir: str = str(uuid.uuid4()), | ||
save_csv: str = "results.csv.gz", | ||
**kwargs, | ||
) -> dict: | ||
""" | ||
Predict single point properties for a list of atoms. | ||
""" | ||
logger.info("Predicting single point properties.") | ||
predicted_properties = defaultdict(list) | ||
for atoms in tqdm( | ||
atoms_list, total=len(atoms_list), desc="Predicting single point properties" | ||
): | ||
predicted_properties["structure"].append(AseAtomsAdaptor.get_structure(atoms)) | ||
predicted_properties["energy"].append(atoms.get_potential_energy()) | ||
predicted_properties["energy_per_atom"].append( | ||
atoms.get_potential_energy() / len(atoms) | ||
) | ||
predicted_properties["forces"].append(atoms.get_forces()) | ||
predicted_properties["stress"].append(atoms.get_stress(voigt=False)) | ||
predicted_properties["stress_GPa"].append(atoms.get_stress(voigt=False) / GPa) | ||
|
||
if not os.path.exists(work_dir): | ||
os.makedirs(work_dir) | ||
|
||
logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}") | ||
|
||
df = pd.DataFrame(predicted_properties) | ||
df.to_csv(os.path.join(work_dir, save_csv), index=False, mode="a") | ||
return predicted_properties |
Oops, something went wrong.