Skip to content
This repository has been archived by the owner on Jul 22, 2024. It is now read-only.

microsoft/autodistil

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Environment

  • This code is modified based on the repository developed by Hugging Face: Transformers v2.1.1

  • Prepare environment

    pip install -r requirements.txt

Data

GLUE Data

  • Download the GLUE data by running this script and unpack it to directory GLUE_DIR

  • TASK_NAME can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE.

    ${GLUE_DIR}/${TASK_NAME}

Wiki Data

  • The original Wiki data used in this project can be found here (It is called 'Raw text from English Wikipedia for general distillation')

  • The processed Wiki data can be generated by the method in TinyBERT using the following script from this repository

    python pregenerate_training_data.py --train_corpus ${CORPUS_RAW} \ --bert_model ${BERT_BASE_DIR}$
    --reduce_memory --do_lower_case
    --epochs_to_generate 3
    --output_dir ${CORPUS_JSON_DIR}$

    ${BERT_BASE_DIR}$ includes the BERT-base teacher model, e.g., BERT-base-uncased

(i) Example on MNLI data (task-agnostic)

First train model on MNLI. Then finetune it on RTE. Finally evaluate it on RTE.

Step 0. Go to the configuration folder

cd Code/run_yaml/

Step 1. Training on MNLI (task-agnostic)

  • $$AMLT_DATA_DIR/Data_GLUE/glue_data/{TASK_NAME}/ is data folder
  • $$AMLT_DATA_DIR/Local_models/pretrained_BERTs/BERT_base_uncased/ contains the teacher and student initialization.
  • Please create model_dir and download the pretrained BERT_base_uncased and put it here

Train_NoAssist_SeriesEpochs_NoHard_PreModel_RndSampl.yaml

Step 2. Finetuning on RTE

  • $$AMLT_DATA_DIR/Outputs/glue/MNLI/NoAssist/All_NoAug_NoHardLabel_PreModel/ contains the models trained on MNLI
  • Epochs_{Epochs_TrainMNLI} is the different model trained on MNLI
  • Please create the folder of $$AMLT_DATA_DIR/Outputs/glue/MNLI/NoAssist/All_NoAug_NoHardLabel_PreModel/ and put the output models of Step 1 here

Train_finalfinetuning_SpecificSubs_SeriesEpochs_NoAssist_NoHardLabel_PretrainedModel.yaml

Step 3. Evaluation on RTE

  • $$AMLT_DATA_DIR/Outputs/glue/{TASK_NAME}/NoAssist/All_FINETUNING_NoHardLabel_PreModel/SpecificSubs/ contains the models finetuned on RTE
  • FinetuneEpochs_{Finetune_Epochs}EpochsMNLI{Epochs_TrainMNLI}Sub{Subs} is the different model finetuned on RTE
  • Please create the folder of $$AMLT_DATA_DIR/Outputs/glue/{TASK_NAME}/NoAssist/All_FINETUNING_NoHardLabel_PreModel/SpecificSubs/ and put the output models of Step 2 here

Evaluate_SpecificSubs_NoAssist_NoHardLabel_PretrainedModel.yaml

(ii) Example on Wiki data

First train model on Wiki. Then finetune it on RTE. Finally evaluate it on RTE.

Step 0. Go to the configuration folder

cd Code/run_yaml/

Step 1. Training on Wiki

  • $$AMLT_DATA_DIR/English_Wiki/corpus_jsonfile_for_general_KD/ contains the processed Wiki data

Train_wiki_NoAssist_NoHard_PreModel_RndSampl.yaml

Step 2. Finetuning on RTE

Step 3. Evaluation on RTE

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •