-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
183 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,3 @@ | ||
# | ||
# This is outdated | ||
# | ||
|
||
import argparse | ||
|
||
from typing import cast, Optional, Union, List | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
import argparse | ||
|
||
from typing import cast, Optional, Union, List | ||
import torch | ||
import pyaici | ||
import pyaici.comms | ||
from pyaici.comms import AiciRunner | ||
from torch import nn | ||
|
||
from transformers import ( | ||
AutoTokenizer, | ||
PreTrainedModel, | ||
AutoModelForCausalLM, | ||
PreTrainedTokenizer, | ||
) | ||
|
||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
|
||
|
||
class StopGeneration(Exception): | ||
pass | ||
|
||
|
||
def check_stop(runner: AiciRunner, seq_id: int): | ||
to_stop = runner.get_seqs_to_stop() | ||
if seq_id in to_stop: | ||
raise StopGeneration | ||
|
||
|
||
def apply_bias(runner: AiciRunner, seq_id: int, scores: torch.Tensor) -> torch.Tensor: | ||
bias_tensor = runner.recv_logit_bias() | ||
runner.print_logs() | ||
check_stop(runner, seq_id) | ||
ff_tokens, backtrack = runner.mid_status(seq_id) | ||
assert backtrack == 0, "backtrack not implemented" | ||
assert len(ff_tokens) == 0, "ff_tokens not implemented" | ||
bias_tensor = torch.from_numpy(bias_tensor).to(scores.device).to(scores.dtype) | ||
# print(bias_tensor.shape, scores.shape, input_ids.shape) | ||
vocab_size = bias_tensor.shape[1] | ||
# scores should be the size of vocabulary but some models (phi-2) make it slightly bigger | ||
assert scores.shape[1] <= vocab_size + 1000 | ||
scores = scores[:, 0:vocab_size] | ||
assert scores.shape == bias_tensor.shape | ||
return bias_tensor + scores | ||
|
||
|
||
def main(args): | ||
tokenizer = cast( | ||
PreTrainedTokenizer, AutoTokenizer.from_pretrained(args.tokenizer or args.model) | ||
) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
args.model, | ||
device_map="auto", | ||
torch_dtype=torch.bfloat16, | ||
) | ||
model = cast(PreTrainedModel, model) | ||
empty_tokens = cast( | ||
List[int], tokenizer.convert_tokens_to_ids(tokenizer.tokenize("")) | ||
) | ||
|
||
runner = pyaici.runner_from_cli(args) | ||
|
||
arg = "" | ||
if args.controller_arg: | ||
with open(args.controller_arg) as f: | ||
arg = f.read() | ||
req_id = "r1" # arbitrary string | ||
seq_id = 1 # there can be multiple sequences in a single request | ||
runner.instantiate(req_id, empty_tokens, args.controller, arg) | ||
runner.assign_seq_id(req_id, seq_id) | ||
runner.print_logs() | ||
|
||
# we execute first post_pre here, so we get the initial ff_tokens | ||
runner.exec_post_pre() | ||
runner.print_logs() | ||
suspend, num_forks, ff_tokens = runner.pre_status(seq_id) | ||
to_stop = runner.get_seqs_to_stop() | ||
if seq_id in to_stop: | ||
print("AICI decided to stop") | ||
exit(1) | ||
assert not suspend, "forking not implemented" | ||
assert num_forks <= 1, "forking not implemented" | ||
|
||
prompt = torch.tensor( | ||
empty_tokens + ff_tokens, dtype=torch.long, device=model.device | ||
).unsqueeze(0) | ||
|
||
model_kwargs = { | ||
"attention_mask": None, | ||
"use_cache": True, | ||
} | ||
input_ids = prompt.squeeze(0) | ||
temperature = 0.01 | ||
|
||
try: | ||
for _ in range(2000): | ||
runner.add_mid(seq_id) | ||
runner.exec_mid() | ||
|
||
m_inp = input_ids.unsqueeze(0) | ||
model_kwargs["attention_mask"] = torch.ones(m_inp.shape, dtype=torch.long, device=model.device) | ||
model_inputs = model.prepare_inputs_for_generation(m_inp, **model_kwargs) | ||
outputs = model( | ||
**model_inputs, | ||
return_dict=True, | ||
output_attentions=False, | ||
output_hidden_states=False, | ||
) | ||
scores: torch.Tensor = outputs.logits[:, -1, :] / temperature | ||
|
||
bias_tensor = runner.recv_logit_bias() | ||
runner.print_logs() | ||
check_stop(runner, seq_id) | ||
ff_tokens, backtrack = runner.mid_status(seq_id) | ||
assert backtrack == 0, "backtrack not implemented" | ||
assert len(ff_tokens) == 0, "ff_tokens not implemented" | ||
bias_tensor = torch.from_numpy(bias_tensor).to(scores.device).to(scores.dtype) | ||
# print(bias_tensor.shape, scores.shape, input_ids.shape) | ||
vocab_size = bias_tensor.shape[1] | ||
# scores should be the size of vocabulary but some models (phi-2) make it slightly bigger | ||
assert scores.shape[1] <= vocab_size + 1000 | ||
scores = scores[:, 0:vocab_size] | ||
assert scores.shape == bias_tensor.shape | ||
|
||
probs = nn.functional.softmax(scores, dim=-1) | ||
|
||
if backtrack > 0 or len(ff_tokens) > 0: | ||
next_tokens = torch.tensor(ff_tokens, dtype=torch.long, device=model.device) | ||
else: | ||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) | ||
|
||
runner.tokens_generated(seq_id, next_tokens.tolist()) | ||
runner.exec_post_pre() | ||
runner.print_logs() | ||
check_stop(runner, seq_id) | ||
|
||
if backtrack > 0: | ||
input_ids = input_ids[:-backtrack] | ||
computed_kv_len = input_ids.shape[0] | ||
input_ids = torch.cat([input_ids, next_tokens], dim=0) | ||
model_kwargs = model._update_model_kwargs_for_generation( | ||
outputs, | ||
model_kwargs, | ||
is_encoder_decoder=model.config.is_encoder_decoder, | ||
) | ||
if "past_key_values" in model_kwargs: | ||
m = model_kwargs["past_key_values"] | ||
# len(m) == num_layers, len(m[0]) == 2 (key, value) | ||
# shape of each elt is (batch_size, num_heads, seq_len, head_dim) | ||
if m is not None and backtrack > 0: | ||
m = [(q[0][:, :, 0:computed_kv_len, :], q[1][:, :, 0:computed_kv_len, :]) for q in m] | ||
model_kwargs["past_key_values"] = m | ||
|
||
suspend, num_forks, ff_tokens = runner.pre_status(seq_id) | ||
check_stop(runner, seq_id) | ||
assert not suspend, "forking not implemented" | ||
assert num_forks <= 1, "forking not implemented" | ||
|
||
if len(ff_tokens) > 0: | ||
input_ids = torch.cat([input_ids, torch.tensor(ff_tokens, dtype=torch.long, device=model.device)], dim=0) | ||
|
||
except StopGeneration: | ||
runner.print_logs() | ||
print("AICI decided to stop") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description="Demo on using HF Transformers with aicirt" | ||
) | ||
parser.add_argument("--model", type=str, required=True, help="model to use") | ||
parser.add_argument( | ||
"--tokenizer", | ||
type=str, | ||
default="", | ||
help="tokenizer to use; defaults to model name", | ||
) | ||
pyaici.add_cli_args(parser, single=True) | ||
args = parser.parse_args() | ||
main(args) |