Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature(LLMLingua): update the paper information #154

Merged
merged 1 commit into from
May 16, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,12 @@ LLMLingua utilizes a compact, well-trained language model (e.g., GPT2-small, LLa

LongLLMLingua mitigates the 'lost in the middle' issue in LLMs, enhancing long-context information processing. It reduces costs and boosts efficiency with prompt compression, improving RAG performance by up to 21.4% using only 1/4 of the tokens.

- [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (ICLR ME-FoMo 2024)<br>
- [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (ACL 2024 and ICLR ME-FoMo 2024)<br>
_Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_

LLMLingua-2, a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in task-agnostic compression. It surpasses LLMLingua in handling out-of-domain data, offering 3x-6x faster performance.

- [LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.12968) (Under Review)<br>
- [LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.12968) (ACL 2024 Findings)<br>
_Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_

## 🎥 Overview
Expand Down
Loading