Self-Supervised Cyclic Diffeomorphic Mapping for Soft Tissue Deformation Recovery in Robotic Surgery Scenes
Implementation for TMI 2024 paper Self-Supervised Cyclic Diffeomorphic Mapping for Soft Tissue Deformation Recovery in Robotic Surgery Scenes by Shizhan Gong, Yonghao Long, Kai Chen, Jiaqi Liu, Yuliang Xiao, Alexis Cheng, Zerui Wang, and Qi Dou.
supplementary.mp4
We recommend to set up the environment with the following command.
pip install -r requirements.txt
We managed to test our code on Ubuntu 18.04 with Python 3.8 and CUDA 11.3. Our implementation is based on single GPU setting.
We provide a sample clip in the folder sample_data
. Please arrange your own data as follows
folder/
└── clip1/
└── img_left/
└── 0001.jpg
└── 0002.jpg
└── ...
└── img_right/
└── 0001.jpg
└── 0002.jpg
└── ...
└── clip2/
└── img_left/
└── img_right/
└── ...
where each clip
folder corresponds to a short video clip, img_left
are the left view of the stereo
images, and img_right
are the right view of the stereo images. Each image with img_left
and img_right
represents a single frame.
The code for Depth estimation is adapted from stereo-transformer. First go to the
data_preprocessing/depth_estimation
folder and install the required environment.
cd data_preprocessing/depth_estimation
pip install -r requirements.txt
Then type the command below for generating disparity maps
python main.py --address path/to/store/data --model_file_name path/to/pretrained-checkpoint
--address
denote the path of the datafolder and --model_file_name
denote the path of pretrained checkpoint.
The checkpoint can be downloaded here.
First go to the
data_preprocessing/tool_segmentation
folder and install the required environment.
cd data_preprocessing/tool_segmentation
conda env create -f environment.yml
conda activate CsrSeg
Then type the command below for generating tool segmentation masks.
python main.py --address path/to/store/data --model_path path/to/pretrained-checkpoint
--address
denote the path of the datafolder and --model_path
denote the path of pretrained checkpoint.
Our pretrained checkpoint can be downloaded here.
Type the command below to for training the model.
python main.py --train_data train.pkl --eval_data eval.pkl --output_dir path/to/store/checkpoint
--train_data
and --eval_data
stores the meta information of the training and validation data. --output_dir
stores
the trained checkpoint.
Here is an example of train.pkl
:
[{'path': 'path/to/data/folder/clip1/',
't0': '0001',
't1': '0002',
't2': '0003',
't3': '0004',
't4': '0005'},
{'path': 'path/to/data/folder/clip1/',
't0': '0002',
't1': '0003',
't2': '0004',
't3': '0005',
't4': '0006'},
...]
and another example of eval.pkl
:
[{'path': 'path/to/data/folder/clip1/',
'sequence': ['0001',
'0002',
'0003',
'0004',
'0005',
'0006',
'0007',
'0008',
...],},
...]
Each sequence in --eval_data
corresponds to only 5 frame while each sequence in eval
corresponds to a longer clip.
Type the command below to for model inference.
python main.py --test_data test.pkl --model_path path/to/pretrained-checkpoint
--test_data
stores the meta information of the test data. --model_path
denote the path of pretrained checkpoint.
Our pretrained checkpoint can be downloaded
here.
test.pkl
has the same format as eval.pkl
.
For any questions, please contact [email protected]