-
Notifications
You must be signed in to change notification settings - Fork 898
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #865 from rca22/rca22_weightedStats
Add classes generalizing running and descriptive statistics to (reliability) weighted samples
- Loading branch information
Showing
6 changed files
with
1,562 additions
and
34 deletions.
There are no files selected for viewing
324 changes: 324 additions & 0 deletions
324
src/Numerics.Tests/StatisticsTests/RunningWeightedStatisticsTests.cs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
// <copyright file="DescriptiveStatisticsTests.cs" company="Math.NET"> | ||
// Math.NET Numerics, part of the Math.NET Project | ||
// http://numerics.mathdotnet.com | ||
// http://github.com/mathnet/mathnet-numerics | ||
// | ||
// Copyright (c) 2009-2016 Math.NET | ||
// | ||
// Permission is hereby granted, free of charge, to any person | ||
// obtaining a copy of this software and associated documentation | ||
// files (the "Software"), to deal in the Software without | ||
// restriction, including without limitation the rights to use, | ||
// copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
// copies of the Software, and to permit persons to whom the | ||
// Software is furnished to do so, subject to the following | ||
// conditions: | ||
// | ||
// The above copyright notice and this permission notice shall be | ||
// included in all copies or substantial portions of the Software. | ||
// | ||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | ||
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | ||
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | ||
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
// OTHER DEALINGS IN THE SOFTWARE. | ||
// </copyright> | ||
|
||
using System.Linq; | ||
using System.Collections.Generic; | ||
using MathNet.Numerics.Distributions; | ||
using MathNet.Numerics.Random; | ||
using MathNet.Numerics.Statistics; | ||
using NUnit.Framework; | ||
|
||
namespace MathNet.Numerics.UnitTests.StatisticsTests | ||
{ | ||
/// <summary> | ||
/// Running statistics tests. | ||
/// </summary> | ||
/// <remarks>NOTE: this class is not included into Silverlight version, because it uses data from local files. | ||
/// In Silverlight access to local files is forbidden, except several cases.</remarks> | ||
[TestFixture, Category("Statistics")] | ||
public class RunningWeightedStatisticsTests | ||
{ | ||
/// <summary> | ||
/// Statistics data. | ||
/// </summary> | ||
readonly IDictionary<string, StatTestData> _data = new Dictionary<string, StatTestData>(); | ||
|
||
/// <summary> | ||
/// Initializes a new instance of the DescriptiveStatisticsTests class. | ||
/// </summary> | ||
public RunningWeightedStatisticsTests() | ||
{ | ||
_data.Add("lottery", new StatTestData("NIST.Lottery.dat")); | ||
_data.Add("lew", new StatTestData("NIST.Lew.dat")); | ||
_data.Add("mavro", new StatTestData("NIST.Mavro.dat")); | ||
_data.Add("michelso", new StatTestData("NIST.Michelso.dat")); | ||
_data.Add("numacc1", new StatTestData("NIST.NumAcc1.dat")); | ||
_data.Add("numacc2", new StatTestData("NIST.NumAcc2.dat")); | ||
_data.Add("numacc3", new StatTestData("NIST.NumAcc3.dat")); | ||
_data.Add("numacc4", new StatTestData("NIST.NumAcc4.dat")); | ||
_data.Add("meixner", new StatTestData("NIST.Meixner.dat")); | ||
} | ||
|
||
/// <summary> | ||
/// <c>IEnumerable</c> Double. | ||
/// </summary> | ||
/// <param name="dataSet">Dataset name.</param> | ||
/// <param name="digits">Digits count.</param> | ||
/// <param name="skewness">Skewness value.</param> | ||
/// <param name="kurtosis">Kurtosis value.</param> | ||
/// <param name="median">Median value.</param> | ||
/// <param name="min">Min value.</param> | ||
/// <param name="max">Max value.</param> | ||
/// <param name="count">Count value.</param> | ||
[TestCase("lottery", 14, -0.09333165310779, -1.19256091074856, 522.5, 4, 999, 218)] | ||
[TestCase("lew", 14, -0.050606638756334, -1.49604979214447, -162, -579, 300, 200)] | ||
[TestCase("mavro", 11, 0.64492948110824, -0.82052379677456, 2.0018, 2.0013, 2.0027, 50)] | ||
[TestCase("michelso", 11, -0.0185388637725746, 0.33968459842539, 299.85, 299.62, 300.07, 100)] | ||
[TestCase("numacc1", 15, 0, double.NaN, 10000002, 10000001, 10000003, 3)] | ||
[TestCase("numacc2", 13, 0, -2.003003003003, 1.2, 1.1, 1.3, 1001)] | ||
[TestCase("numacc3", 9, 0, -2.003003003003, 1000000.2, 1000000.1, 1000000.3, 1001)] | ||
[TestCase("numacc4", 7, 0, -2.00300300299913, 10000000.2, 10000000.1, 10000000.3, 1001)] | ||
[TestCase("meixner", 8, -0.016649617280859657, 0.8171318629552635, -0.002042931016531602, -4.825626912281697, 5.3018298664184913, 10000)] | ||
public void ConsistentWithNist(string dataSet, int digits, double skewness, double kurtosis, double median, double min, double max, int count) | ||
{ | ||
var data = _data[dataSet]; | ||
var stats = new RunningWeightedStatistics(data.Data.Select(x => System.Tuple.Create(1.0, x))); | ||
|
||
AssertHelpers.AlmostEqualRelative(data.Mean, stats.Mean, 10); | ||
AssertHelpers.AlmostEqualRelative(data.StandardDeviation, stats.StandardDeviation, digits); | ||
AssertHelpers.AlmostEqualRelative(skewness, stats.Skewness, 8); | ||
AssertHelpers.AlmostEqualRelative(kurtosis, stats.Kurtosis, 8); | ||
Assert.AreEqual(stats.Minimum, min); | ||
Assert.AreEqual(stats.Maximum, max); | ||
Assert.AreEqual(stats.Count, count); | ||
} | ||
|
||
[TestCase("lottery", 1e-8, -0.09268823, -0.09333165)] | ||
[TestCase("lew", 1e-8, -0.0502263, -0.05060664)] | ||
[TestCase("mavro", 1e-6, 0.6254181, 0.6449295)] | ||
[TestCase("michelso", 1e-8, -0.01825961, -0.01853886)] | ||
[TestCase("numacc1", 1e-8, 0, 0)] | ||
//[TestCase("numacc2", 1e-20, 3.254232e-15, 3.259118e-15)] TODO: accuracy | ||
//[TestCase("numacc3", 1e-14, 1.747103e-09, 1.749726e-09)] TODO: accuracy | ||
//[TestCase("numacc4", 1e-13, 2.795364e-08, 2.799561e-08)] TODO: accuracy | ||
[TestCase("meixner", 1e-8, -0.01664712, -0.01664962)] | ||
public void SkewnessConsistentWithR_e1071(string dataSet, double delta, double skewnessType1, double skewnessType2) | ||
{ | ||
var data = _data[dataSet]; | ||
var stats = new RunningWeightedStatistics(data.Data.Select(x => System.Tuple.Create(1.0, x))); | ||
|
||
Assert.That(stats.Skewness, Is.EqualTo(skewnessType2).Within(delta), "Skewness"); | ||
Assert.That(stats.PopulationSkewness, Is.EqualTo(skewnessType1).Within(delta), "PopulationSkewness"); | ||
} | ||
|
||
[TestCase("lottery", -1.192781, -1.192561)] | ||
[TestCase("lew", -1.48876, -1.49605)] | ||
[TestCase("mavro", -0.858384, -0.8205238)] | ||
[TestCase("michelso", 0.2635305, 0.3396846)] | ||
[TestCase("numacc1", -1.5, double.NaN)] | ||
[TestCase("numacc2", -1.999, -2.003003)] | ||
[TestCase("numacc3", -1.999, -2.003003)] | ||
[TestCase("numacc4", -1.999, -2.003003)] | ||
[TestCase("meixner", 0.8161234, 0.8171319)] | ||
public void KurtosisConsistentWithR_e1071(string dataSet, double kurtosisType1, double kurtosisType2) | ||
{ | ||
var data = _data[dataSet]; | ||
var stats = new RunningWeightedStatistics(data.Data.Select(x => System.Tuple.Create(1.0, x))); | ||
|
||
Assert.That(stats.Kurtosis, Is.EqualTo(kurtosisType2).Within(1e-6), "Kurtosis"); | ||
Assert.That(stats.PopulationKurtosis, Is.EqualTo(kurtosisType1).Within(1e-6), "PopulationKurtosis"); | ||
} | ||
|
||
[Test] | ||
public void NegativeWeightsThrow() | ||
{ | ||
Assert.That(() => new RunningWeightedStatistics(new[] { System.Tuple.Create(-1.0, 1.0) }), Throws.TypeOf<System.ArgumentOutOfRangeException>()); | ||
var stats0 = new RunningWeightedStatistics(new System.Tuple<double, double>[0]); | ||
Assert.That(() => stats0.Push(-1.0, 1.0), Throws.TypeOf<System.ArgumentOutOfRangeException>()); | ||
Assert.That(() => stats0.PushRange(new[] { System.Tuple.Create(-1.0, 1.0) }), Throws.TypeOf<System.ArgumentOutOfRangeException>()); | ||
} | ||
|
||
[Test] | ||
public void ShortSequences() | ||
{ | ||
var stats0 = new RunningWeightedStatistics(new System.Tuple<double, double>[0]); | ||
Assert.That(stats0.Skewness, Is.NaN); | ||
Assert.That(stats0.Kurtosis, Is.NaN); | ||
|
||
var stats1 = new RunningWeightedStatistics(new[] { System.Tuple.Create(1.0, 1.0) }); | ||
Assert.That(stats1.Skewness, Is.NaN); | ||
Assert.That(stats1.Kurtosis, Is.NaN); | ||
|
||
var stats2 = new RunningWeightedStatistics(new[] { System.Tuple.Create(1.0, 1.0), System.Tuple.Create(1.0, 2.0) }); | ||
Assert.That(stats2.Skewness, Is.NaN); | ||
Assert.That(stats2.Kurtosis, Is.NaN); | ||
|
||
var stats3 = new RunningWeightedStatistics(new[] { System.Tuple.Create(1.0, 1.0), System.Tuple.Create(1.0, 2.0), System.Tuple.Create(1.0, -3.0) }); | ||
Assert.That(stats3.Skewness, Is.Not.NaN); | ||
Assert.That(stats3.Kurtosis, Is.NaN); | ||
|
||
var stats4 = new RunningWeightedStatistics(new[] { System.Tuple.Create(1.0, 1.0), System.Tuple.Create(1.0, 2.0), System.Tuple.Create(1.0, -3.0), System.Tuple.Create(1.0, -4.0) }); | ||
Assert.That(stats4.Skewness, Is.Not.NaN); | ||
Assert.That(stats4.Kurtosis, Is.Not.NaN); | ||
} | ||
|
||
[Test] | ||
public void ZeroVarianceSequence() | ||
{ | ||
var stats = new RunningWeightedStatistics(new[] { System.Tuple.Create(1.0, 2.0), System.Tuple.Create(1.0, 2.0), System.Tuple.Create(1.0, 2.0), System.Tuple.Create(1.0, 2.0) }); | ||
Assert.That(stats.Skewness, Is.NaN); | ||
Assert.That(stats.Kurtosis, Is.NaN); | ||
} | ||
|
||
[Test] | ||
public void CombineUnweighted() | ||
{ | ||
var rnd = new SystemRandomSource(10); | ||
var a = Generate.Random(200, new Erlang(2, 0.2, rnd)).Select(datum => System.Tuple.Create(1.0, datum)).ToArray(); | ||
var b = Generate.Random(100, new Beta(1.2, 1.4, rnd)).Select(datum => System.Tuple.Create(1.0, datum)).ToArray(); | ||
var c = Generate.Random(150, new Rayleigh(0.8, rnd)).Select(datum => System.Tuple.Create(1.0, datum)).ToArray(); | ||
|
||
var d = a.Concat(b).Concat(c); | ||
var direct = d.Select(datum => datum.Item2).ToArray(); | ||
|
||
var x = new RunningWeightedStatistics(d); | ||
|
||
var y = new RunningWeightedStatistics(a); | ||
y.PushRange(b); | ||
y.PushRange(c); | ||
|
||
var za = new RunningWeightedStatistics(a); | ||
var zb = new RunningWeightedStatistics(b); | ||
var zc = new RunningWeightedStatistics(c); | ||
var z = za + zb + zc; | ||
|
||
Assert.That(x.Mean, Is.EqualTo(direct.Mean()).Within(1e-12), "Mean Reference"); | ||
Assert.That(y.Mean, Is.EqualTo(x.Mean).Within(1e-12), "Mean y"); | ||
Assert.That(z.Mean, Is.EqualTo(x.Mean).Within(1e-12), "Mean z"); | ||
|
||
Assert.That(x.Variance, Is.EqualTo(direct.Variance()).Within(1e-12), "Variance Reference"); | ||
Assert.That(y.Variance, Is.EqualTo(x.Variance).Within(1e-12), "Variance y"); | ||
Assert.That(z.Variance, Is.EqualTo(x.Variance).Within(1e-12), "Variance z"); | ||
|
||
Assert.That(x.PopulationVariance, Is.EqualTo(direct.PopulationVariance()).Within(1e-12), "PopulationVariance Reference"); | ||
Assert.That(y.PopulationVariance, Is.EqualTo(x.PopulationVariance).Within(1e-12), "PopulationVariance y"); | ||
Assert.That(z.PopulationVariance, Is.EqualTo(x.PopulationVariance).Within(1e-12), "PopulationVariance z"); | ||
|
||
Assert.That(x.StandardDeviation, Is.EqualTo(direct.StandardDeviation()).Within(1e-12), "StandardDeviation Reference"); | ||
Assert.That(y.StandardDeviation, Is.EqualTo(x.StandardDeviation).Within(1e-12), "StandardDeviation y"); | ||
Assert.That(z.StandardDeviation, Is.EqualTo(x.StandardDeviation).Within(1e-12), "StandardDeviation z"); | ||
|
||
Assert.That(x.PopulationStandardDeviation, Is.EqualTo(direct.PopulationStandardDeviation()).Within(1e-12), "PopulationStandardDeviation Reference"); | ||
Assert.That(y.PopulationStandardDeviation, Is.EqualTo(x.PopulationStandardDeviation).Within(1e-12), "PopulationStandardDeviation y"); | ||
Assert.That(z.PopulationStandardDeviation, Is.EqualTo(x.PopulationStandardDeviation).Within(1e-12), "PopulationStandardDeviation z"); | ||
|
||
Assert.That(x.Skewness, Is.EqualTo(direct.Skewness()).Within(1e-12), "Skewness Reference (not independent!)"); | ||
Assert.That(y.Skewness, Is.EqualTo(x.Skewness).Within(1e-12), "Skewness y"); | ||
Assert.That(z.Skewness, Is.EqualTo(x.Skewness).Within(1e-12), "Skewness z"); | ||
|
||
Assert.That(x.PopulationSkewness, Is.EqualTo(direct.PopulationSkewness()).Within(1e-12), "PopulationSkewness Reference (not independent!)"); | ||
Assert.That(y.PopulationSkewness, Is.EqualTo(x.PopulationSkewness).Within(1e-12), "PopulationSkewness y"); | ||
Assert.That(z.PopulationSkewness, Is.EqualTo(x.PopulationSkewness).Within(1e-12), "PopulationSkewness z"); | ||
|
||
Assert.That(x.Kurtosis, Is.EqualTo(direct.Kurtosis()).Within(1e-12), "Kurtosis Reference (not independent!)"); | ||
Assert.That(y.Kurtosis, Is.EqualTo(x.Kurtosis).Within(1e-12), "Kurtosis y"); | ||
Assert.That(z.Kurtosis, Is.EqualTo(x.Kurtosis).Within(1e-12), "Kurtosis z"); | ||
|
||
Assert.That(x.PopulationKurtosis, Is.EqualTo(direct.PopulationKurtosis()).Within(1e-12), "PopulationKurtosis Reference (not independent!)"); | ||
Assert.That(y.PopulationKurtosis, Is.EqualTo(x.PopulationKurtosis).Within(1e-12), "PopulationKurtosis y"); | ||
Assert.That(z.PopulationKurtosis, Is.EqualTo(x.PopulationKurtosis).Within(1e-12), "PopulationKurtosis z"); | ||
} | ||
|
||
[Test] | ||
/// Tests that combination of data via + / Combine is consistent with the incremental approach. | ||
public void CombineWeighted() | ||
{ | ||
var rnd = new SystemRandomSource(10); | ||
var wa = Generate.Random(200, new ContinuousUniform(1.0, 10.0)); | ||
var a = Generate.Random(200, new Erlang(2, 0.2, rnd)).Select((datum, i) => System.Tuple.Create(wa[i], datum)).ToArray(); | ||
var wb = Generate.Random(100, new ContinuousUniform(1.0, 10.0)); | ||
var b = Generate.Random(100, new Beta(1.2, 1.4, rnd)).Select((datum, i) => System.Tuple.Create(wb[i], datum)).ToArray(); | ||
var wc = Generate.Random(150, new ContinuousUniform(1.0, 10.0)); | ||
var c = Generate.Random(150, new Rayleigh(0.8, rnd)).Select((datum, i) => System.Tuple.Create(wc[i], datum)).ToArray(); | ||
|
||
var d = a.Concat(b).Concat(c); | ||
|
||
var x = new RunningWeightedStatistics(d); | ||
|
||
var y = new RunningWeightedStatistics(a); | ||
y.PushRange(b); | ||
y.PushRange(c); | ||
|
||
var za = new RunningWeightedStatistics(a); | ||
var zb = new RunningWeightedStatistics(b); | ||
var zc = new RunningWeightedStatistics(c); | ||
var z = za + zb + zc; | ||
|
||
Assert.That(y.Mean, Is.EqualTo(x.Mean).Within(1e-12), "Mean y"); | ||
Assert.That(z.Mean, Is.EqualTo(x.Mean).Within(1e-12), "Mean z"); | ||
|
||
Assert.That(y.Variance, Is.EqualTo(x.Variance).Within(1e-12), "Variance y"); | ||
Assert.That(z.Variance, Is.EqualTo(x.Variance).Within(1e-12), "Variance z"); | ||
|
||
Assert.That(y.PopulationVariance, Is.EqualTo(x.PopulationVariance).Within(1e-12), "PopulationVariance y"); | ||
Assert.That(z.PopulationVariance, Is.EqualTo(x.PopulationVariance).Within(1e-12), "PopulationVariance z"); | ||
|
||
Assert.That(y.StandardDeviation, Is.EqualTo(x.StandardDeviation).Within(1e-12), "StandardDeviation y"); | ||
Assert.That(z.StandardDeviation, Is.EqualTo(x.StandardDeviation).Within(1e-12), "StandardDeviation z"); | ||
|
||
Assert.That(y.PopulationStandardDeviation, Is.EqualTo(x.PopulationStandardDeviation).Within(1e-12), "PopulationStandardDeviation y"); | ||
Assert.That(z.PopulationStandardDeviation, Is.EqualTo(x.PopulationStandardDeviation).Within(1e-12), "PopulationStandardDeviation z"); | ||
|
||
Assert.That(y.Skewness, Is.EqualTo(x.Skewness).Within(1e-12), "Skewness y"); | ||
Assert.That(z.Skewness, Is.EqualTo(x.Skewness).Within(1e-12), "Skewness z"); | ||
|
||
Assert.That(y.PopulationSkewness, Is.EqualTo(x.PopulationSkewness).Within(1e-12), "PopulationSkewness y"); | ||
Assert.That(z.PopulationSkewness, Is.EqualTo(x.PopulationSkewness).Within(1e-12), "PopulationSkewness z"); | ||
|
||
Assert.That(y.Kurtosis, Is.EqualTo(x.Kurtosis).Within(1e-12), "Kurtosis y"); | ||
Assert.That(z.Kurtosis, Is.EqualTo(x.Kurtosis).Within(1e-12), "Kurtosis z"); | ||
|
||
Assert.That(y.PopulationKurtosis, Is.EqualTo(x.PopulationKurtosis).Within(1e-12), "PopulationKurtosis y"); | ||
Assert.That(z.PopulationKurtosis, Is.EqualTo(x.PopulationKurtosis).Within(1e-12), "PopulationKurtosis z"); | ||
} | ||
|
||
[TestCase("lottery")] | ||
[TestCase("lew")] | ||
[TestCase("mavro")] | ||
[TestCase("michelso")] | ||
[TestCase("numacc1")] | ||
[TestCase("meixner")] | ||
/// Generates samples with weightings that are integral and compares that to the unweighted statistics result. Doesn't correspond with the | ||
/// higher order sample statistics because our weightings represent reliability weights, *not* frequency weights, and the Bessel correction is | ||
/// calculated appropriately - so don't let the construction of the test mislead you. | ||
public void ConsistentWithUnweighted (string dataSet) | ||
{ | ||
var data = _data[dataSet].Data.ToArray(); | ||
var gen = new DiscreteUniform(1, 5); | ||
var weights = new int[data.Length]; | ||
gen.Samples(weights); | ||
|
||
var stats = new RunningWeightedStatistics( data.Select((x, i) => System.Tuple.Create((double)weights[i], x)) ); | ||
var stats2 = new RunningStatistics(); | ||
for (int i = 0; i < data.Length; ++i) | ||
for(int j = 0; j < weights[i] ; ++j) | ||
stats2.Push(data[i]); | ||
var sumWeights = weights.Sum(); | ||
Assert.That(stats.TotalWeight, Is.EqualTo(sumWeights), "TotalWeight"); | ||
Assert.That(stats.Count, Is.EqualTo(weights.Length), "Count"); | ||
Assert.That(stats2.Minimum, Is.EqualTo(stats.Minimum), "Minimum"); | ||
Assert.That(stats2.Maximum, Is.EqualTo(stats.Maximum), "Maximum"); | ||
Assert.That(stats2.Mean, Is.EqualTo(stats.Mean).Within(1e-8), "Mean"); | ||
Assert.That(stats2.PopulationVariance, Is.EqualTo(stats.PopulationVariance).Within(1e-9), "PopulationVariance"); | ||
Assert.That(stats2.PopulationStandardDeviation, Is.EqualTo(stats.PopulationStandardDeviation).Within(1e-9), "PopulationStandardDeviation"); | ||
Assert.That(stats2.PopulationSkewness, Is.EqualTo(stats.PopulationSkewness).Within(1e-8), "PopulationSkewness"); | ||
Assert.That(stats2.PopulationKurtosis, Is.EqualTo(stats.PopulationKurtosis).Within(1e-8), "PopulationKurtosis"); | ||
} | ||
} | ||
} |
Oops, something went wrong.