-
Notifications
You must be signed in to change notification settings - Fork 6
2. Creating the Model
kausmik edited this page Aug 25, 2020
·
1 revision
DashAI allows you to train a model on a certain Databunch.You can either train the default model provided by us or make your own custom models.
Default Model for tabular applications.
"default": {
"out_sz": null,
"layers": [200, 100],
"emb_drop": 0,
"ps": null,
"y_range": null,
"use_bn": true,
"bn_final": false
},
Refer https://docs.fast.ai/tabular.models.html to know more details about the different arguments.
Custom Model for tabular data.
"custom": {
"layers": ["nn.Linear(4, 5)", "nn.ReLU()", "nn.Linear(5, 3)"],
"extra_args": {
"bn_begin": false
}
}
DashAI allows you to add different torch.nn layers to your models.Add sufficient layers to make your own custom models for tabular application.
Default Models for vision applications.
CNN Model -
"cnn": {
"method": "default",
"default": {
"arch": "resnet18",
"extra":{
"cut": null,
"pretrained": true,
"lin_ftrs": [512],
"ps": 0.5,
"custom_head": null,
"split_on": null,
"bn_final": false,
"concat_pool": true,
"init": "nn.init.kaiming_normal_"
}
}
},
UNET Model -
"unet": {
"method": "default",
"default": {
"arch": "resnet18",
"extra":{
"cut": null,
"pretrained": true,
"split_on": null,
"blur_final": true,
"norm_type": null,
"blur": false,
"self_attention": false,
"y_range": null,
"last_cross": true,
"bottle": false
}
}
},
Custom Model for vision data.
"custom": {
"layers": ["nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)",
"nn.ReLU(inplace=True)",
"nn.Conv2d(64, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)",
"nn.Flatten()",
"nn.Linear(in_features=100352, out_features=2, bias=True)"
],
"extra": {}
}
DashAI allows you to add different torch.nn layers to your models.Add sufficient layers to make your own custom models for vision application.
"model": {
"type": "classifier",
"classifier": {
"method": "default",
"lm_train_epochs": 0,
"default": {
"arch": "AWD_LSTM",
"extra": {
"bptt":70,
"max_len": 140,
"pretrained": true,
"drop_mult": 1.0,
"lin_ftrs": null,
"ps": null
},
"configs": {
"AWD_LSTM": {
"bidir": false,
"emb_sz": 400,
"embed_p": 0.02,
"hidden_p": 0.15,
"input_p": 0.25,
"n_hid": 1152,
"n_layers": 3,
"output_p": 0.1,
"pad_token": 1,
"qrnn": false,
"weight_p": 0.2
},
"Transformer": {
"ctx_len":512,
"n_layers":12,
"n_heads":12,
"d_model":768,
"d_head":64,
"d_inner":3072,
"resid_p":0.1,
"attn_p":0.1,
"ff_p":0.1,
"embed_p":0.1,
"output_p":0.0,
"bias":true,
"scale":true,
"act":"Activation.GeLU",
"double_drop":false,
"init":"init_transformer",
"mask":false
},
"TransformerXL": {
"ctx_len":150,
"n_layers":12,
"n_heads":10,
"d_model":410,
"d_head": 41,
"d_inner":2100,
"resid_p":0.1,
"attn_p":0.1,
"ff_p":0.1,
"embed_p":0.1,
"output_p":0.1,
"bias":false,
"scale":true,
"act":"Activation.ReLU",
"double_drop":true,
"init":"init_transformer",
"mem_len":150,
"mask":true
}
}
}
},
"language_model": {
"method": "default",
"default": {
"arch": "AWD_LSTM",
"extra": {
"pretrained": false,
"drop_mult": 1.0,
"pretrained_fnames": null
},
"configs": {
"AWD_LSTM": {
"bidir": false,
"emb_sz": 400,
"embed_p": 0.02,
"hidden_p": 0.15,
"input_p": 0.25,
"n_hid": 1152,
"n_layers": 3,
"out_bias": true,
"output_p": 0.1,
"pad_token": 1,
"qrnn": false,
"tie_weights": true,
"weight_p": 0.2
},
"Transformer": {
"ctx_len":512,
"n_layers":12,
"n_heads":12,
"d_model":768,
"d_head":64,
"d_inner":3072,
"resid_p":0.1,
"attn_p":0.1,
"ff_p":0.1,
"embed_p":0.1,
"output_p":0.0,
"bias":true,
"scale":true,
"act":"Activation.GeLU",
"double_drop":false,
"tie_weights":true,
"out_bias":false,
"init":"init_transformer",
"mask":false
},
"TransformerXL": {
"ctx_len":150,
"n_layers":12,
"n_heads":10,
"d_model":410,
"d_head": 41,
"d_inner":2100,
"resid_p":0.1,
"attn_p":0.1,
"ff_p":0.1,
"embed_p":0.1,
"output_p":0.1,
"bias":false,
"scale":true,
"act":"Activation.ReLU",
"double_drop":true,
"tie_weights":true,
"out_bias":true,
"init":"init_transformer",
"mem_len":150,
"mask":true
}
}
}
}