A tool to predict the electronic density of molecules using a SA-GPR model
You can install it by runing the comand:
pip install git+https://github.com/m-stack-org/rho-predictor.git
Please be sure you have the weights and averages of a pre-trained model.
TODO: how to add the data
In a script
import rho_predictor
rho_predictor.predictor.predict_sagpr('path/to/mol.xyz', 'bfdb_HCNO')
or as a cli tool:
python -m rho_predictor.predictor path/to/mol.xyz bfdb_HCNO
The authors acknowledge the National Centre of Competence in Research (NCCR) "Materials' Revolution: Computational Design and Discovery of Novel Materials (MARVEL)" of the Swiss National Science Foundation (SNSF, grant number 182892) and the European Research Council (ERC, grant agreement no 817977).
- Briling, K. R.; Fabrizio, A.; Corminboeuf, C. Impact of Quantum-Chemical Metrics on the Machine Learning Prediction of Electron Density. J. Chem. Phys. 2021 , 155, 024107; doi: 10.1063/5.0055393 .
- Fabrizio, A.; Briling, K. R.; Girardier, D. D.; Corminboeuf, C. Learning On-Top: Regressing the On-Top Pair Density for Real-Space Visualization of Electron Correlation. J. Chem. Phys. 2020 , 153, 204111; doi: 10.1063/5.0033326 .
- Fabrizio, A.; Grisafi, A.; Meyer, B.; Ceriotti, M.; Corminboeuf, C. Electron Density Learning of Non-Covalent Systems. Chem. Sci. 2019, 10, 9424; doi: 10.1039/C9SC02696G .
- Grisafi, A.; Fabrizio, A.; Meyer, B.; Wilkins, D. M.; Corminboeuf, C.; Ceriotti, M. Transferable Machine-Learning Model of the Electron Density. ACS Cent. Sci. 2019 , 5, 57; doi: 10.1021/acscentsci.8b00551 .
- Grisafi, A.; Wilkins, D. M.; Csányi, G.; Ceriotti, M. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems. Phys. Rev. Lett. 2018, 120, 036002; doi: 10.1103/physrevlett.120.036002 .
- Bartók, A. P.; Kondor, R.; Csányi, G. On Representing Chemical Environments. Phys. Rev. B 2013, 87; doi: 10.1103/physrevb.87.184115 .
- Vela, S.; Fabrizio, A.; Briling, K. R.; Corminboeuf, C. Learning the Exciton Properties of Azo-Dyes. J. Phys. Chem. Lett. 2021 , 12, 5957; doi: 10.1021/acs.jpclett.1c01425 .
- Fabrizio, A.; Briling, K.; Grisafi, A.; Corminboeuf, C. Learning (From) the Electron Density: Transferability, Conformational and Chemical Diversity. Chimia 2020, 74, 232; doi: 10.2533/chimia.2020.232 .