-
Notifications
You must be signed in to change notification settings - Fork 1
Expected Payoff Matrices
Dr. Goodrich gave a hint on how to avoid doing a bunch of repeated play simulations each generation, by finding the long-run expected payoff matrix. (Quoted below)
The most efficient approach is to figure out what strategy A against strategy B would earn given a particular gamma, V(A|B) for all A and B pairs. This becomes the payoff matrix, and you use replicator or imitator dynamics on the V(A|B)'s.
The formula for the long term discounted expected reward is:
V(A|B) = Σt=0[ γt U1(At | Bt)]
We can store these pre-computed V(A|B)
values here for the various games:
C | D | |
---|---|---|
C | (R, R) | (S, T) |
CD | (T, S) | (P, P) |
Where:
- R = 3
- T = 5
- S = 1
- P = 2
AC | AD | TfT | NTfT | |
---|---|---|---|---|
AC | R⁄1-γ | S⁄1-γ | R⁄1-γ | S⁄1-γ |
AD | T⁄1-γ | P⁄1-γ | T + γP⁄1-γ | S + Tγ⁄1-γ |
TfT | R⁄1-γ | S + Pγ⁄1-γ | R⁄1-γ |
S + Pγ + Tγ2 + Rγ3 1-γ4 |
NTfT | T⁄1-γ | T + Sγ⁄1-γ |
T + Pγ + Sγ2 + Rγ3 1-γ4 |
P + Rγ 1 - γ2 |
Note: This should be read where the row is the first player, and the column the second. So the entry on row
AC
and columnAD
should be intepreted as:V(AC | AD)
C | D | |
---|---|---|
C | (5, 5) | (1, 3) |
CD | (3, 1) | (3, 3) |
Note: This expected payoff matrix for this could be thought of the same as for the Prisoner's Dilemma above, using the following values:
- R = 5
- T = 3
- S = 1
- P = 3
This is the same payoff matrix as above, but since P == T
we've re-written it by swapping out all of the P
elements with T
.
Using:
- R = 5
- T = 3
- S = 1
AC | AD | TfT | NTfT | |
---|---|---|---|---|
AC | R⁄1-γ | S⁄1-γ | R⁄1-γ | S⁄1-γ |
AD | T⁄1-γ | T⁄1-γ | T + γT⁄1-γ | S + Tγ⁄1-γ |
TfT | R⁄1-γ | S + Tγ⁄1-γ | R⁄1-γ |
S + Tγ + Tγ2 + Rγ3 1-γ4 |
NTfT | T⁄1-γ | T + Sγ⁄1-γ |
T + Tγ + Sγ2 + Rγ3 1-γ4 |
T + Rγ 1 - γ2 |
This matrix also allows choice of gender, which can be thought of as having 8 different strategies.
Where:
- R = 3
- T = 5
- S = 1
- P = 2
(H) AC | (H) AD | (H) TfT | (H) NTfT | (W) AC | (W) AD | (W) TfT | (W) NTfT | |
---|---|---|---|---|---|---|---|---|
(H) AC | P⁄1-γ | S⁄1-γ | P⁄1-γ | S⁄1-γ | R⁄1-γ | S⁄1-γ | R⁄1-γ | S⁄1-γ |
(H) AD | P⁄1-γ | R⁄1-γ | P + γR⁄1-γ | R + γP⁄1-γ | P⁄1-γ | T⁄1-γ | P + γT⁄1-γ | T + γP⁄1-γ |
(H) TfT | P⁄1-γ | S + γR⁄1-γ | P⁄1-γ |
S + Rγ + Pγ2 + Pγ3 1-γ4 |
R⁄1-γ | S + γT⁄1-γ | R⁄1-γ |
S + Tγ + Pγ2 + Rγ3 1-γ4 |
(H) NTfT | P⁄1-γ | R + γS⁄1-γ |
P + Rγ + Sγ2 + Pγ3 1-γ4 |
R + Pγ 1 - γ2 |
P⁄1-γ | T + γS⁄1-γ |
P + Tγ + Sγ2 + Rγ3 1-γ4 |
T + Rγ 1 - γ2 |
(W) AC | T⁄1-γ | P⁄1-γ | T⁄1-γ | P⁄1-γ | R⁄1-γ | P⁄1-γ | R⁄1-γ | P⁄1-γ |
(W) AD | S⁄1-γ | R⁄1-γ | S + γR⁄1-γ | R + γS⁄1-γ | S⁄1-γ | P⁄1-γ | S + γP⁄1-γ | P + γS⁄1-γ |
(W) TfT | T⁄1-γ | P + γR⁄1-γ | T⁄1-γ |
P + Rγ + Sγ2 + Tγ3 1-γ4 |
R⁄1-γ | P⁄1-γ | R⁄1-γ |
P + Pγ + Sγ2 + Rγ3 1-γ4 |
(W) NTfT | S⁄1-γ | R + γR⁄1-γ |
S + Rγ + Pγ2 + Tγ3 1-γ4 |
R + Tγ 1 - γ2 |
S⁄1-γ | P⁄1-γ |
S + Pγ + Pγ2 + Rγ3 1-γ4 |
P + Rγ 1 - γ2 |