forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
18 changed files
with
1,422 additions
and
153 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import paddle | ||
from paddle import ParamAttr | ||
from paddle.nn import Layer | ||
from paddle.nn.initializer import Constant | ||
from paddle.nn.quant.format import ConvertibleQuantedLayer | ||
|
||
|
||
class CacheKVMatMul(Layer): | ||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, x, y, transpose_x=False, transpose_y=False, name=None): | ||
return paddle.matmul(x, y, transpose_x, transpose_y, name) | ||
|
||
|
||
class QuantizedCacheKVMatMul(ConvertibleQuantedLayer): | ||
def __init__(self, layer: Layer, q_config): | ||
super().__init__() | ||
# For FakeQuant | ||
self.activation_quanter = None | ||
self.weight_quanter = None | ||
if q_config.activation is not None: | ||
self.activation_quanter = q_config.activation._instance(layer) | ||
|
||
def forward(self, x, y, transpose_x=False, transpose_y=False, name=None): | ||
# qdq | ||
if self.activation_quanter is not None: | ||
y = self.activation_quanter(y) | ||
return paddle.matmul(x, y, transpose_x, transpose_y, name) | ||
|
||
def weights_to_quanters(self): | ||
return [("weight", "weight_quanter")] | ||
|
||
def activation_quanters(self): | ||
return ["activation_quanter"] | ||
|
||
|
||
class ShiftSmoothCacheKVMatMul(Layer): | ||
""" | ||
The computational logic of ShiftSmoothCacheKVMatMul is the same as CacheKVMatMul. | ||
The only difference is that its inputs are shift. | ||
""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.sequence_parallel = False | ||
self.dtype = None | ||
|
||
def forward( | ||
self, | ||
x, | ||
y, | ||
transpose_x=False, | ||
transpose_y=False, | ||
perm_x=None, | ||
perm_y=None, | ||
use_smooth_x=False, | ||
use_smooth_out=False, | ||
name=None, | ||
sequence_parallel=False, | ||
): | ||
self.sequence_parallel = sequence_parallel | ||
# smooth | ||
smooth_x, smooth_y = self._smooth(x, y, use_smooth_x) | ||
# transpose | ||
if perm_x is not None: | ||
smooth_x = paddle.transpose(smooth_x, perm=perm_x) | ||
if perm_y is not None: | ||
smooth_y = paddle.transpose(smooth_y, perm=perm_y) | ||
# matmul output | ||
out = paddle.matmul(smooth_x, smooth_y, transpose_x, transpose_y, name) | ||
if not use_smooth_out: | ||
return out | ||
else: | ||
# combine heads | ||
if self.sequence_parallel: | ||
out = paddle.transpose(out, perm=[2, 0, 1, 3]) | ||
else: | ||
out = paddle.transpose(out, perm=[0, 2, 1, 3]) | ||
return paddle.multiply(out, self.smooth_weight) | ||
|
||
def _smooth(self, x, y, use_smooth_x): | ||
# For ShiftSmooth | ||
smooth_shape = [1] | ||
self.dtype = y.dtype | ||
if not hasattr(self, "smooth_weight"): | ||
self.smooth_weight = self.create_parameter( | ||
shape=smooth_shape, attr=ParamAttr(initializer=Constant(value=1.0)), dtype=self.dtype | ||
) | ||
smooth_y = y | ||
smooth_y = paddle.divide(smooth_y, self.smooth_weight) | ||
|
||
if use_smooth_x: | ||
smooth_x = x | ||
x = paddle.multiply(smooth_x, self.smooth_weight) | ||
return x, smooth_y | ||
|
||
def convert_weight(self, smooth_weight=None): | ||
if smooth_weight is not None: | ||
self.smooth_weight.set_value(smooth_weight.squeeze().cast(self.dtype)) | ||
|
||
|
||
class QuantizedShiftSmoothCacheKVMatMul(ConvertibleQuantedLayer): | ||
""" | ||
The computational logic of QuantizedShiftSmoothCacheKVMatMul is the same as RowParallelLinear. | ||
The only difference is that its inputs are shift. | ||
""" | ||
|
||
def __init__(self, layer: Layer, q_config): | ||
super().__init__() | ||
|
||
# For FakeQuant | ||
self.weight_quanter = None | ||
self.activation_quanter = None | ||
self.smooth_weight = layer.smooth_weight | ||
if q_config.activation is not None: | ||
self.activation_quanter = q_config.activation._instance(layer) | ||
|
||
def forward( | ||
self, | ||
x, | ||
y, | ||
transpose_x=False, | ||
transpose_y=False, | ||
perm_x=None, | ||
perm_y=None, | ||
use_smooth_x=False, | ||
use_smooth_out=False, | ||
name=None, | ||
sequence_parallel=False, | ||
): | ||
# smooth | ||
smooth_x, smooth_y = self._smooth(x, y, use_smooth_x) | ||
# qdq | ||
if self.activation_quanter is not None: | ||
smooth_y = self.activation_quanter(smooth_y) | ||
# transpose | ||
if perm_x is not None: | ||
smooth_x = paddle.transpose(smooth_x, perm=perm_x) | ||
if perm_y is not None: | ||
smooth_y = paddle.transpose(smooth_y, perm=perm_y) | ||
# matmul output | ||
out = paddle.matmul(smooth_x, smooth_y, transpose_x, transpose_y, name) | ||
if not use_smooth_out: | ||
return out | ||
else: | ||
# combine heads | ||
if sequence_parallel: | ||
out = paddle.transpose(out, perm=[2, 0, 1, 3]) | ||
else: | ||
out = paddle.transpose(out, perm=[0, 2, 1, 3]) | ||
return paddle.multiply(out, self.smooth_weight) | ||
|
||
def _smooth(self, x, y, use_smooth_x): | ||
# For ShiftSmooth | ||
self.dtype = y.dtype | ||
smooth_y = y | ||
smooth_y = paddle.divide(smooth_y, self.smooth_weight) | ||
|
||
if use_smooth_x: | ||
smooth_x = x | ||
x = paddle.multiply(smooth_x, self.smooth_weight) | ||
return x, smooth_y | ||
|
||
def weights_to_quanters(self): | ||
return [("weight", "weight_quanter")] | ||
|
||
def activation_quanters(self): | ||
return ["activation_quanter"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
Custome Attention Layer for quantization. | ||
""" | ||
# import paddle | ||
import paddle.tensor as tensor | ||
from paddle.nn import Layer | ||
from paddle.nn.quant.format import ConvertibleQuantedLayer | ||
|
||
|
||
class QuantizedCustomAttentionLayer(ConvertibleQuantedLayer): | ||
""" | ||
Quantized Custom Attention Layer. | ||
""" | ||
|
||
def __init__(self, layer: Layer, q_config=None): | ||
""" | ||
Initialize the QuantizeWrapper class. | ||
Args: | ||
layer (Layer): The layer to be quantized. | ||
q_config (QuantConfig, optional): The quantization configuration. Defaults to None. | ||
""" | ||
super().__init__() | ||
# hard code: get activation quanter from weight | ||
self.activation_quanter_k = q_config.weight._instance(layer) | ||
self.activation_quanter_v = q_config.activation._instance(layer) | ||
self.layer = layer | ||
self.enable_fake_quant = False | ||
self.quant_info = None | ||
layer_name = self.layer.full_name() | ||
self.layer_id = int(layer_name.split("_")[-1]) | ||
self.kv_losses = {} | ||
|
||
def forward( | ||
self, | ||
q, | ||
config, | ||
k, | ||
v, | ||
attention_mask, | ||
output_attentions, | ||
# alibi, | ||
# attn_mask_startend_row_indices, | ||
# sequence_parallel, | ||
**kwargs | ||
): | ||
"""forward""" | ||
if self.enable_fake_quant: | ||
self.collect_kv_quant_policy(q, k, v, **kwargs) | ||
perm = [0, 2, 1, 3] # [1, 2, 0, 3] if self.sequence_parallel else [0, 2, 1, 3] | ||
tmp_k = tensor.transpose(x=k, perm=perm) | ||
tmp_v = tensor.transpose(x=v, perm=perm) | ||
if self.activation_quanter_k is not None: | ||
tmp_k = self.activation_quanter_k(tmp_k) | ||
if self.activation_quanter_v is not None: | ||
tmp_v = self.activation_quanter_v(tmp_v) | ||
k = tensor.transpose(x=tmp_k, perm=perm) | ||
v = tensor.transpose(x=tmp_v, perm=perm) | ||
return self.layer( | ||
q, | ||
config, | ||
k, | ||
v, | ||
attention_mask, | ||
output_attentions, | ||
# alibi, | ||
# attn_mask_startend_row_indices, | ||
# sequence_parallel, | ||
**kwargs, | ||
) | ||
|
||
def weights_to_quanters(self): | ||
"""weights to quanters""" | ||
return [] | ||
|
||
def activation_quanters(self): | ||
"""activation to quanters""" | ||
return ["activation_quanter_k", "activation_quanter_v"] |
Oops, something went wrong.