Skip to content

Implement many Sparse Reward algorithms in Gym Fetch environment

License

Notifications You must be signed in to change notification settings

lidonghui-ai/Sparse-Reward-Algorithms

 
 

Repository files navigation

Sparse-Reward-Algorithms

Introduction

We implemented many classes of Sparse Reward algorithms in Gym Fetch environment including Reward Shaping, Imitation Learning, Curriculum Learning, Hindsight Experience Replay, Curiosity-Driven Exploration, Hierachical Reinforcement Learning. This work is for better understanding of sparse reward algorithms.

Our code is based on https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC- and we have changed a lot on code simplification and content richness.

Usage

  1. DDPG:

python main.py --retrain

  1. Reward Shaping:

python main.py --retrain --rtype dense

  1. Curriculum Learning:

python main.py --retrain --curriculum 2

  1. Imitation Learning:

python main.py --retrain --imitation --imit_ratio 1

  1. Hindsight Experience Replay:

python main.py --retrain --her

  1. Forward Dynamic:

python main.py --retrain --curiosity

  1. Hierachical DDPG:

python main.py --retrain --layers 2

  1. Test the latest saved checkpoint:

python main.py --test

if using HDDPG, you should use :

python main.py --test --layers 2

  1. Save demostrations for imitation learning:

python main.py --retrain --her --save_experience

Result

image

About

Implement many Sparse Reward algorithms in Gym Fetch environment

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%