Skip to content

leoburgy/spotipy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo


Spotipy - Accurate and efficient spot detection with CNNs

Installation

Install the correct tensorflow for your CUDA version.

Clone the repo and install it

git clone [email protected]:maweigert/spotipy.git
pip install spotipy

Usage

A SpotNet spot detection model can be instantiated from a custom Config class:

from spotipy.model import Config, SpotNet

config = Config(
        n_channel_in=1,
        unet_n_depth=2,
        train_learning_rate=3e-4,
        train_patch_size=(128,128),
        train_batch_size=4
    )

model = SpotNet(config,name="mymodel", basedir="models")

Training

The training data for a SpotNet model consists of input image X and spot coordinates P (in y,x order):

import numpy as np
from spotipy.utils import points_to_prob

# generate some dummy data 
def dummy_data(n_samples=16):
    X = np.random.uniform(0,1,(n_samples, 128, 128))
    P = np.random.randint(0,128,(n_samples, 21, 2))
    for x, p in zip(X, P):
        x[tuple(p.T.tolist())] = np.random.uniform(2,5,len(p))
    Y = np.stack(tuple(points_to_prob(p[:,::-1], (128,128)) for p in P))
    return X, Y

X,Y = dummy_data(128)
Xv,Yv = dummy_data(16)

model.train(X,Y, validation_data=[X, Y], epochs=10, steps_per_epoch=128)

model.optimize_thresholds(Xv,Yv)

Inference

Applying a trained SpotNet:

img = dummy_data(1)[0][0]

prob, points = model.predict(img)

Contributors

Albert Dominguez Mantes, Antonio Herrera, Irina Khven, Anjali Schläppi, Giolele La Manno, Martin Weigert

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%