Skip to content

Commit

Permalink
update peak definitions to make efficiency a parameter of fits
Browse files Browse the repository at this point in the history
  • Loading branch information
ggmarshall committed Oct 24, 2024
1 parent b826460 commit 45bc09c
Showing 1 changed file with 71 additions and 94 deletions.
165 changes: 71 additions & 94 deletions src/pygama/pargen/AoE_cal.py
Original file line number Diff line number Diff line change
Expand Up @@ -608,86 +608,84 @@ def get_peak_label(peak: float) -> str:
return "Tl FEP @"


def pass_pdf_hpge(
x,
x_lo,
x_hi,
n_sig1,
n_sig2,
mu,
sigma,
htail,
tau,
n_bkg1,
n_bkg2,
hstep1,
hstep2,
hstep3,
def pass_pdf_gos(
x, x_lo, x_hi, n_sig, epsilon_sig, n_bkg, epsilon_bkg, mu, sigma, hstep1, hstep2
):
return hpge_peak.pdf_ext(
x, x_lo, x_hi, n_sig1, mu, sigma, htail, tau, n_bkg1, hstep1
return gauss_on_step.pdf_ext(
x, x_lo, x_hi, n_sig * epsilon_sig, mu, sigma, n_bkg * epsilon_bkg, hstep1
)


def fail_pdf_hpge(
def fail_pdf_gos(
x, x_lo, x_hi, n_sig, epsilon_sig, n_bkg, epsilon_bkg, mu, sigma, hstep1, hstep2
):
return gauss_on_step.pdf_ext(
x,
x_lo,
x_hi,
n_sig * (1 - epsilon_sig),
mu,
sigma,
n_bkg * (1 - epsilon_bkg),
hstep2,
)


def pass_pdf_hpge(
x,
x_lo,
x_hi,
n_sig1,
n_sig2,
n_sig,
epsilon_sig,
n_bkg,
epsilon_bkg,
mu,
sigma,
htail,
tau,
n_bkg1,
n_bkg2,
hstep1,
hstep2,
hstep3,
):
return hpge_peak.pdf_ext(
x, x_lo, x_hi, n_sig2, mu, sigma, htail, tau, n_bkg2, hstep2
x,
x_lo,
x_hi,
n_sig * epsilon_sig,
mu,
sigma,
htail,
tau,
n_bkg * epsilon_bkg,
hstep1,
)


def tot_pdf_hpge(
def fail_pdf_hpge(
x,
x_lo,
x_hi,
n_sig1,
n_sig2,
n_sig,
epsilon_sig,
n_bkg,
epsilon_bkg,
mu,
sigma,
htail,
tau,
n_bkg1,
n_bkg2,
hstep1,
hstep2,
hstep3,
):
return hpge_peak.pdf_ext(
x, x_lo, x_hi, n_sig1 + n_sig2, mu, sigma, htail, tau, n_bkg1 + n_bkg2, hstep3
)


def pass_pdf_gos(
x, x_lo, x_hi, n_sig1, n_sig2, mu, sigma, n_bkg1, n_bkg2, hstep1, hstep2, hstep3
):
return gauss_on_step.pdf_ext(x, x_lo, x_hi, n_sig1, mu, sigma, n_bkg1, hstep1)


def fail_pdf_gos(
x, x_lo, x_hi, n_sig1, n_sig2, mu, sigma, n_bkg1, n_bkg2, hstep1, hstep2, hstep3
):
return gauss_on_step.pdf_ext(x, x_lo, x_hi, n_sig2, mu, sigma, n_bkg2, hstep2)


def tot_pdf_gos(
x, x_lo, x_hi, n_sig1, n_sig2, mu, sigma, n_bkg1, n_bkg2, hstep1, hstep2, hstep3
):
return gauss_on_step.pdf_ext(
x, x_lo, x_hi, n_sig1 + n_sig2, mu, sigma, n_bkg1 + n_bkg2, hstep3
x,
x_lo,
x_hi,
n_sig * (1 - epsilon_sig),
mu,
sigma,
htail,
tau,
n_bkg * (1 - epsilon_bkg),
hstep2,
)


Expand Down Expand Up @@ -730,6 +728,7 @@ def get_survival_fraction(
fit_range=None,
high_cut=None,
pars=None,
errs=None,
dt_mask=None,
mode="greater",
func=hpge_peak,
Expand Down Expand Up @@ -758,8 +757,8 @@ def get_survival_fraction(
else:
raise ValueError("mode not recognised")

if pars is None:
(pars, _, _, _, func, _, _, _) = pgc.unbinned_staged_energy_fit(
if pars is None or errs is None:
(pars, errs, cov, _, func, _, _, _) = pgc.unbinned_staged_energy_fit(
energy,
func,
guess_func=energy_guess,
Expand All @@ -768,62 +767,54 @@ def get_survival_fraction(
fit_range=fit_range,
)

guess_pars_cut = copy.deepcopy(pars)
guess_pars_surv = copy.deepcopy(pars)

# add update guess here for n_sig and n_bkg
guess_pars_cut = update_guess(func, guess_pars_cut, energy[(~nan_idxs) & (~idxs)])
guess_pars_surv = update_guess(func, guess_pars_surv, energy[(~nan_idxs) & (idxs)])

parguess = {
"x_lo": pars["x_lo"],
"x_hi": pars["x_hi"],
"mu": pars["mu"],
"sigma": pars["sigma"],
"n_sig1": guess_pars_surv["n_sig"],
"n_bkg1": guess_pars_surv["n_bkg"],
"n_sig2": guess_pars_cut["n_sig"],
"n_bkg2": guess_pars_cut["n_bkg"],
"hstep1": pars["hstep"],
"hstep2": pars["hstep"],
"hstep3": pars["hstep"],
"n_sig": pars["n_sig"],
"n_bkg": pars["n_bkg"],
"epsilon_sig": guess_pars_surv["n_sig"] / pars["n_sig"],
"epsilon_bkg": guess_pars_surv["n_bkg"] / pars["n_bkg"],
}

bounds = {
"n_sig1": (0, pars["n_sig"] + pars["n_bkg"]),
"n_sig2": (0, pars["n_sig"] + pars["n_bkg"]),
"n_bkg1": (0, pars["n_bkg"] + pars["n_sig"]),
"n_bkg2": (0, pars["n_bkg"] + pars["n_sig"]),
"n_sig": (0, pars["n_sig"] + pars["n_bkg"]),
"epsilon_sig": (0, 1),
"n_bkg": (0, pars["n_bkg"] + pars["n_sig"]),
"epsilon_bkg": (0, 1),
"hstep1": (-1, 1),
"hstep2": (-1, 1),
"hstep3": (-1, 1),
}

if func == hpge_peak:
parguess.update({"htail": pars["htail"], "tau": pars["tau"]})

if func == hpge_peak:
lh = (
cost.ExtendedUnbinnedNLL(energy[(~nan_idxs) & (idxs)], pass_pdf_hpge)
+ cost.ExtendedUnbinnedNLL(energy[(~nan_idxs) & (~idxs)], fail_pdf_hpge)
+ cost.ExtendedUnbinnedNLL(energy[(~nan_idxs)], tot_pdf_hpge)
)
lh = cost.ExtendedUnbinnedNLL(
energy[(~nan_idxs) & (idxs)], pass_pdf_hpge
) + cost.ExtendedUnbinnedNLL(energy[(~nan_idxs) & (~idxs)], fail_pdf_hpge)
elif func == gauss_on_step:
lh = (
cost.ExtendedUnbinnedNLL(energy[(~nan_idxs) & (idxs)], pass_pdf_gos)
+ cost.ExtendedUnbinnedNLL(energy[(~nan_idxs) & (~idxs)], fail_pdf_gos)
+ cost.ExtendedUnbinnedNLL(energy[(~nan_idxs)], tot_pdf_gos)
)
lh = cost.ExtendedUnbinnedNLL(
energy[(~nan_idxs) & (idxs)], pass_pdf_gos
) + cost.ExtendedUnbinnedNLL(energy[(~nan_idxs) & (~idxs)], fail_pdf_gos)

else:
raise ValueError("Unknown func")

m = Minuit(lh, **parguess)
fixed = ["x_lo", "x_hi", "mu", "sigma"]
fixed = ["x_lo", "x_hi", "n_sig", "n_bkg", "mu", "sigma"] # "hstep"
if func == hpge_peak:
fixed += ["tau", "htail"]
if fix_step is True:
fixed += ["hstep1", "hstep2", "hstep3"]
fixed += ["hstep1", "hstep2"]

m.fixed[fixed] = True
for arg, val in bounds.items():
Expand All @@ -832,37 +823,23 @@ def get_survival_fraction(
m.simplex().migrad()
m.hesse()

ct_n = m.values["n_sig2"]
ct_err = m.errors["n_sig2"]
surv_n = m.values["n_sig1"]
surv_err = m.errors["n_sig1"]

pc_n = ct_n + surv_n

sf = surv_n / pc_n
err = 100 * sf * (1 - sf) * np.sqrt((ct_err / ct_n) ** 2 + (surv_err / surv_n) ** 2)
sf *= 100
sf = m.values["epsilon_sig"] * 100
err = m.errors["epsilon_sig"] * 100

if display > 1:
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig, (ax1, ax2) = plt.subplots(1, 2)
bins = np.arange(1552, 1612, 1)
ax1.hist(energy[(~nan_idxs) & (idxs)], bins=bins, histtype="step")

ax2.hist(energy[(~nan_idxs) & (~idxs)], bins=bins, histtype="step")

ax3.hist(energy[(~nan_idxs)], bins=bins, histtype="step")

if func == hpge_peak:
ax1.plot(bins, pass_pdf_hpge(bins, **m.values.to_dict())[1])
ax2.plot(bins, fail_pdf_hpge(bins, **m.values.to_dict())[1])

ax3.plot(bins, tot_pdf_hpge(bins, **m.values.to_dict())[1])
elif func == gauss_on_step:
ax1.plot(bins, pass_pdf_gos(bins, **m.values.to_dict())[1])
ax2.plot(bins, fail_pdf_gos(bins, **m.values.to_dict())[1])

ax3.plot(bins, tot_pdf_gos(bins, **m.values.to_dict())[1])

plt.show()

return sf, err, m.values, m.errors
Expand Down

0 comments on commit 45bc09c

Please sign in to comment.