A library for SPICE extensions and geospatial data product generation.
- Extensions and wrappers for SPICE routines and common data patterns.
- Automation of SPICE kernel creation from JSON definition files and modern data file formats and third-party data structures.
- Level-1 geospatial data processing routines (e.g., geolocation).
pip install lasp-curryer
NOTE: Data files and precompiled binaries are not currently automated and thus require manual downloading. This will be addressed in the next major release.
Download from the Curryer repo:
data/generic
- Generic spice kernels (e.g., leapsecond kernel)- Download
data/<misssion>
- Mission specific kernels and/or kernel definitions.data/gmted
- Digital Elevation Model (DEMs) with global coverage at 15-arc-second.- Alternatively, use the script download_dem.py to download different types and/or resolutions from the USGS.
Define the top-level directory using the environment variable CURRYER_DATA_DIR
or pass the path to routines which require data files.
Download Third-party Files:
- SPICE Utilities: https://naif.jpl.nasa.gov/naif/utilities.html
- At minimum:
mkspk
,msopck
,brief
,ckbreif
- At minimum:
- SPICE Generic Kernels (large):
- de430.bsp,
place in
data/generic
. - PyProj Data:
- Data directory:
import pyproj; print(pyproj.datadir.get_user_data_dir())
- EGM96 TIFF
- Data directory:
- de430.bsp,
place in
Time conversion:
from curryer import spicetime
print(spicetime.adapt(0, from_='ugps', to='iso'))
# 1980-01-06 00:00:00.000000
print(spicetime.adapt('2024-11-13', 'iso'))
# 1415491218000000
print(spicetime.adapt(1415491218000000, to='et'))
# 784728069.1827033
import numpy as np
print(repr(spicetime.adapt(np.arange(4) * 60e6 + 1415491218000000, to='dt64')))
# array(['2024-11-13T00:00:00.000000', '2024-11-13T00:01:00.000000',
# '2024-11-13T00:02:00.000000', '2024-11-13T00:03:00.000000'],
# dtype='datetime64[us]')
Abstractions:
from curryer import spicierpy
spicierpy.ext.infer_ids('ISS', 25544, from_norad=True)
# {'mission': 'ISS',
# 'spacecraft': -125544,
# 'clock': -125544,
# 'ephemeris': -125544,
# 'attitude': -125544000,
# 'instruments': {}}
earth = spicierpy.obj.Body('Earth')
print(earth, earth.id)
# Body(EARTH) 399
import curryer
mkrn = curryer.meta.MetaKernel.from_json(
'data/tsis1/tsis_v01.kernels.tm.json', sds_dir='data/generic', relative=True
)
print(mkrn)
# MetaKernel(Spacecraft(ISS_SC), Body(ISS_ELC3), Body(ISS_EXPA35), Body(TSIS_TADS),
# Body(TSIS_AZEL), Body(TSIS_TIM), Body(TSIS_TIM_GLINT))
with spicierpy.ext.load_kernel([mkrn.sds_kernels, mkrn.mission_kernels]):
print(spicierpy.ext.instrument_boresight('TSIS_TIM'))
# [0. 0. 1.]
mkrn = curryer.meta.MetaKernel.from_json(
'tests/data/clarreo/cprs_v01.kernels.tm.json', sds_dir='data/generic', relative=True
)
print(mkrn)
# MetaKernel(Spacecraft(ISS_SC), Body(CPRS_BASE), Body(CPRS_PEDE),
# Body(CPRS_AZ), Body(CPRS_YOKE), Body(CPRS_EL), Body(CPRS_HYSICS))
with spicierpy.ext.load_kernel([mkrn.sds_kernels, mkrn.mission_kernels]):
print(curryer.compute.spatial.pixel_vectors('CPRS_HYSICS'))
# (480,
# array([[ 0.00173869, -0.08715574, 0.99619318],
# [ 0.0017315 , -0.08679351, 0.99622482],
# [ 0.00172431, -0.08643127, 0.99625632],
# ...,
# [-0.00171712, 0.08606901, 0.9962877 ],
# [-0.00172431, 0.08643127, 0.99625632],
# [-0.0017315 , 0.08679351, 0.99622482]]))
Create CLARREO Dynamic Kernels:
import curryer
meta_kernel = 'tests/data/clarreo/cprs_v01.kernels.tm.json'
generic_dir = 'data/generic'
kernel_configs = [
'data/clarreo/iss_sc_v01.ephemeris.spk.json',
'data/clarreo/iss_sc_v01.attitude.ck.json',
'data/clarreo/cprs_az_v01.attitude.ck.json',
'data/clarreo/cprs_el_v01.attitude.ck.json',
]
output_dir = '/tmp'
input_file_or_obj = 'tests/data/demo/cprs_geolocation_tlm_20230101_20240430.nc'
# Load meta kernel details. Includes existing static kernels.
mkrn = curryer.meta.MetaKernel.from_json(meta_kernel, relative=True, sds_dir=generic_dir)
# Create the dynamic kernels from the JSONs alone. Note that they
# contain the reference to the input_data netcdf4 file to read.
generated_kernels = []
creator = curryer.kernels.create.KernelCreator(overwrite=False, append=False)
# Generate the kernels from the config and input data (file or object).
for kernel_config in kernel_configs:
generated_kernels.append(creator.write_from_json(
kernel_config, output_kernel=output_dir, input_data=input_file_or_obj,
))
Geolocate CLARREO HYSICS Instrument:
import pandas as pd
import curryer
meta_kernel = 'tests/data/clarreo/cprs_v01.kernels.tm.json'
generic_dir = 'data/generic'
time_range = ('2023-01-01', '2023-01-01T00:05:00')
ugps_times = curryer.spicetime.adapt(pd.date_range(*time_range, freq='67ms', inclusive='left'), 'iso')
# Load meta kernel details. Includes existing static kernels.
mkrn = curryer.meta.MetaKernel.from_json(meta_kernel, relative=True, sds_dir=generic_dir)
# Geolocate all the individual pixels and create the L1A data product!
with curryer.spicierpy.ext.load_kernel([mkrn.sds_kernels, mkrn.mission_kernels]):
geoloc_inst = curryer.compute.spatial.Geolocate('CPRS_HYSICS')
l1a_dataset = geoloc_inst(ugps_times)
l1a_dataset.to_netcdf('cprs_geolocation_l1a_20230101.nc')
Assumes dynamic kernels have been created and their file names defined within the metakernel JSON file.