Code, pre-train model and factsheet of RepRFN for NTIRE 2023 Challenge on Efficient Super-Resolution. Our team ID is 7.
git clone https://github.com/laonafahaodange/NTIRE2023-ESR-RepRFN.git
- Set the
--model_id 0
/--model_id 7
to test the baseline / RepRFN model fromrun.sh
CUDA_VISIBLE_DEVICES=0 python test_demo.py --data_dir [path to your data dir] --save_dir [path to your save dir] --model_id 0
CUDA_VISIBLE_DEVICES=0 python test_demo.py --data_dir [path to your data dir] --save_dir [path to your save dir] --model_id 7
- Be sure the change the directories
--data_dir
and--save_dir
.
- Be sure the change the directories
Code similar to the following is used.
from utils.model_summary import get_model_flops, get_model_activation
from models.team00_RFDN import RFDN
model = RFDN()
input_dim = (3, 256, 256) # set the input dimension
activations, num_conv = get_model_activation(model, input_dim)
activations = activations / 10 ** 6
print("{:>16s} : {:<.4f} [M]".format("#Activations", activations))
print("{:>16s} : {:<d}".format("#Conv2d", num_conv))
flops = get_model_flops(model, input_dim, False)
flops = flops / 10 ** 9
print("{:>16s} : {:<.4f} [G]".format("FLOPs", flops))
num_parameters = sum(map(lambda x: x.numel(), model.parameters()))
num_parameters = num_parameters / 10 ** 6
print("{:>16s} : {:<.4f} [M]".format("#Params", num_parameters))
Specifically you can run the models/team07_RepRFN.py
to get the result, remember to uncomment the code.