-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* Init * fix(type errors) * feat(deepinfra embeddings) * fix(default model) * fix(deepinfra): axios is removed * ref(deepinfra): remove redundant cast * format(deepinfra) * doc(deepinfra) * doc(deepinfra) * Update deepinfra.mdx * Format --------- Co-authored-by: Jacob Lee <[email protected]>
- Loading branch information
1 parent
cc80b12
commit a2a55e2
Showing
8 changed files
with
384 additions
and
0 deletions.
There are no files selected for viewing
127 changes: 127 additions & 0 deletions
127
docs/core_docs/docs/integrations/text_embedding/deepinfra.mdx
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
--- | ||
sidebar_label: DeepInfra | ||
--- | ||
|
||
# DeepInfra Embeddings | ||
|
||
The `DeepInfraEmbeddings` class utilizes the DeepInfra API to generate embeddings for given text inputs. This guide will walk you through the setup and usage of the `DeepInfraEmbeddings` class, helping you integrate it into your project seamlessly. | ||
|
||
## Installation | ||
|
||
Install the `@langchain/community` package as shown below: | ||
|
||
import IntegrationInstallTooltip from "@mdx_components/integration_install_tooltip.mdx"; | ||
|
||
<IntegrationInstallTooltip></IntegrationInstallTooltip> | ||
|
||
```bash npm2yarn | ||
npm i @langchain/community | ||
``` | ||
|
||
## Initialization | ||
|
||
With this integration, you can use the DeepInfra embeddings model to get embeddings for your text data. Here is the [link](https://deepinfra.com/models/embeddings) to the embeddings models. | ||
|
||
First, you need to sign up on the DeepInfra website and get the API token from [here](https://deepinfra.com/dash/api_keys). You can copy names from the model cards and start using them in your code. | ||
|
||
To use the `DeepInfraEmbeddings` class, you need an API token from DeepInfra. You can pass this token directly to the constructor or set it as an environment variable (`DEEPINFRA_API_TOKEN`). | ||
|
||
### Basic Usage | ||
|
||
Here’s how to create an instance of `DeepInfraEmbeddings`: | ||
|
||
```typescript | ||
import { DeepInfraEmbeddings } from "@langchain/community/embeddings/deepinfra"; | ||
|
||
const embeddings = new DeepInfraEmbeddings({ | ||
apiToken: "YOUR_API_TOKEN", | ||
modelName: "sentence-transformers/clip-ViT-B-32", // Optional, defaults to "sentence-transformers/clip-ViT-B-32" | ||
batchSize: 1024, // Optional, defaults to 1024 | ||
}); | ||
``` | ||
|
||
If the `apiToken` is not provided, it will be read from the `DEEPINFRA_API_TOKEN` environment variable. | ||
|
||
## Generating Embeddings | ||
|
||
### Embedding a Single Query | ||
|
||
To generate embeddings for a single text query, use the `embedQuery` method: | ||
|
||
```typescript | ||
const embedding = await embeddings.embedQuery( | ||
"What would be a good company name for a company that makes colorful socks?" | ||
); | ||
console.log(embedding); | ||
``` | ||
|
||
### Embedding Multiple Documents | ||
|
||
To generate embeddings for multiple documents, use the `embedDocuments` method. This method will handle batching automatically based on the `batchSize` parameter: | ||
|
||
```typescript | ||
const documents = [ | ||
"Document 1 text...", | ||
"Document 2 text...", | ||
"Document 3 text...", | ||
]; | ||
|
||
const embeddingsArray = await embeddings.embedDocuments(documents); | ||
console.log(embeddingsArray); | ||
``` | ||
|
||
## Customizing Requests | ||
|
||
You can customize the base URL the SDK sends requests to by passing a `configuration` parameter: | ||
|
||
```typescript | ||
const customEmbeddings = new DeepInfraEmbeddings({ | ||
apiToken: "YOUR_API_TOKEN", | ||
configuration: { | ||
baseURL: "https://your_custom_url.com", | ||
}, | ||
}); | ||
``` | ||
|
||
This allows you to route requests through a custom endpoint if needed. | ||
|
||
## Error Handling | ||
|
||
If the API token is not provided and cannot be found in the environment variables, an error will be thrown: | ||
|
||
```typescript | ||
try { | ||
const embeddings = new DeepInfraEmbeddings(); | ||
} catch (error) { | ||
console.error("DeepInfra API token not found"); | ||
} | ||
``` | ||
|
||
## Example | ||
|
||
Here’s a complete example of how to set up and use the `DeepInfraEmbeddings` class: | ||
|
||
```typescript | ||
import { DeepInfraEmbeddings } from "@langchain/community/embeddings/deepinfra"; | ||
|
||
const embeddings = new DeepInfraEmbeddings({ | ||
apiToken: "YOUR_API_TOKEN", | ||
modelName: "sentence-transformers/clip-ViT-B-32", | ||
batchSize: 512, | ||
}); | ||
|
||
async function runExample() { | ||
const queryEmbedding = await embeddings.embedQuery("Example query text."); | ||
console.log("Query Embedding:", queryEmbedding); | ||
|
||
const documents = ["Text 1", "Text 2", "Text 3"]; | ||
const documentEmbeddings = await embeddings.embedDocuments(documents); | ||
console.log("Document Embeddings:", documentEmbeddings); | ||
} | ||
|
||
runExample(); | ||
``` | ||
|
||
## Feedback and Support | ||
|
||
For feedback or questions, please contact [[email protected]](mailto:[email protected]). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
import { DeepInfraEmbeddings } from "@langchain/community/embeddings/deepinfra"; | ||
|
||
const model = new DeepInfraEmbeddings({ | ||
apiToken: process.env.DEEPINFRA_API_TOKEN, | ||
batchSize: 1024, // Default value | ||
modelName: "sentence-transformers/clip-ViT-B-32", // Default value | ||
}); | ||
|
||
const embeddings = await model.embedQuery( | ||
"Tell me a story about a dragon and a princess." | ||
); | ||
console.log(embeddings); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
import { DeepInfraEmbeddings } from "@langchain/community/embeddings/deepinfra"; | ||
|
||
const model = new DeepInfraEmbeddings({ | ||
apiToken: process.env.DEEPINFRA_API_TOKEN, | ||
batchSize: 1024, // Default value | ||
modelName: "sentence-transformers/clip-ViT-B-32", // Default value | ||
}); | ||
|
||
const embeddings = await model.embedQuery( | ||
"Tell me a story about a dragon and a princess." | ||
); | ||
console.log(embeddings); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
import { getEnvironmentVariable } from "@langchain/core/utils/env"; | ||
import { Embeddings, EmbeddingsParams } from "@langchain/core/embeddings"; | ||
import { chunkArray } from "@langchain/core/utils/chunk_array"; | ||
|
||
/** | ||
* The default model name to use for generating embeddings. | ||
*/ | ||
const DEFAULT_MODEL_NAME = "sentence-transformers/clip-ViT-B-32"; | ||
|
||
/** | ||
* The default batch size to use for generating embeddings. | ||
* This is limited by the DeepInfra API to a maximum of 1024. | ||
*/ | ||
const DEFAULT_BATCH_SIZE = 1024; | ||
|
||
/** | ||
* Environment variable name for the DeepInfra API token. | ||
*/ | ||
const API_TOKEN_ENV_VAR = "DEEPINFRA_API_TOKEN"; | ||
|
||
export interface DeepInfraEmbeddingsRequest { | ||
inputs: string[]; | ||
normalize?: boolean; | ||
image?: string; | ||
webhook?: string; | ||
} | ||
|
||
/** | ||
* Input parameters for the DeepInfra embeddings | ||
*/ | ||
export interface DeepInfraEmbeddingsParams extends EmbeddingsParams { | ||
/** | ||
* The API token to use for authentication. | ||
* If not provided, it will be read from the `DEEPINFRA_API_TOKEN` environment variable. | ||
*/ | ||
apiToken?: string; | ||
|
||
/** | ||
* The model ID to use for generating completions. | ||
* Default: `sentence-transformers/clip-ViT-B-32` | ||
*/ | ||
modelName?: string; | ||
|
||
/** | ||
* The maximum number of texts to embed in a single request. This is | ||
* limited by the DeepInfra API to a maximum of 1024. | ||
*/ | ||
batchSize?: number; | ||
} | ||
|
||
/** | ||
* Response from the DeepInfra embeddings API. | ||
*/ | ||
export interface DeepInfraEmbeddingsResponse { | ||
/** | ||
* The embeddings generated for the input texts. | ||
*/ | ||
embeddings: number[][]; | ||
/** | ||
* The number of tokens in the input texts. | ||
*/ | ||
input_tokens: number; | ||
/** | ||
* The status of the inference. | ||
*/ | ||
request_id?: string; | ||
} | ||
|
||
/** | ||
* A class for generating embeddings using the DeepInfra API. | ||
* @example | ||
* ```typescript | ||
* // Embed a query using the DeepInfraEmbeddings class | ||
* const model = new DeepInfraEmbeddings(); | ||
* const res = await model.embedQuery( | ||
* "What would be a good company name for a company that makes colorful socks?", | ||
* ); | ||
* console.log({ res }); | ||
* ``` | ||
*/ | ||
export class DeepInfraEmbeddings | ||
extends Embeddings | ||
implements DeepInfraEmbeddingsParams | ||
{ | ||
apiToken: string; | ||
|
||
batchSize: number; | ||
|
||
modelName: string; | ||
|
||
/** | ||
* Constructor for the DeepInfraEmbeddings class. | ||
* @param fields - An optional object with properties to configure the instance. | ||
*/ | ||
constructor( | ||
fields?: Partial<DeepInfraEmbeddingsParams> & { | ||
verbose?: boolean; | ||
} | ||
) { | ||
const fieldsWithDefaults = { | ||
modelName: DEFAULT_MODEL_NAME, | ||
batchSize: DEFAULT_BATCH_SIZE, | ||
...fields, | ||
}; | ||
|
||
super(fieldsWithDefaults); | ||
|
||
const apiKey = | ||
fieldsWithDefaults?.apiToken || getEnvironmentVariable(API_TOKEN_ENV_VAR); | ||
|
||
if (!apiKey) { | ||
throw new Error("DeepInfra API token not found"); | ||
} | ||
|
||
this.modelName = fieldsWithDefaults?.modelName ?? this.modelName; | ||
this.batchSize = fieldsWithDefaults?.batchSize ?? this.batchSize; | ||
this.apiToken = apiKey; | ||
} | ||
|
||
/** | ||
* Generates embeddings for an array of texts. | ||
* @param inputs - An array of strings to generate embeddings for. | ||
* @returns A Promise that resolves to an array of embeddings. | ||
*/ | ||
async embedDocuments(inputs: string[]): Promise<number[][]> { | ||
const batches = chunkArray(inputs, this.batchSize); | ||
|
||
const batchRequests = batches.map((batch: string[]) => | ||
this.embeddingWithRetry({ | ||
inputs: batch, | ||
}) | ||
); | ||
|
||
const batchResponses = await Promise.all(batchRequests); | ||
|
||
const out: number[][] = []; | ||
|
||
for (let i = 0; i < batchResponses.length; i += 1) { | ||
const batch = batches[i]; | ||
const { embeddings } = batchResponses[i]; | ||
for (let j = 0; j < batch.length; j += 1) { | ||
out.push(embeddings[j]); | ||
} | ||
} | ||
|
||
return out; | ||
} | ||
|
||
/** | ||
* Generates an embedding for a single text. | ||
* @param text - A string to generate an embedding for. | ||
* @returns A Promise that resolves to an array of numbers representing the embedding. | ||
*/ | ||
async embedQuery(text: string): Promise<number[]> { | ||
const { embeddings } = await this.embeddingWithRetry({ | ||
inputs: [text], | ||
}); | ||
return embeddings[0]; | ||
} | ||
|
||
/** | ||
* Generates embeddings with retry capabilities. | ||
* @param request - An object containing the request parameters for generating embeddings. | ||
* @returns A Promise that resolves to the API response. | ||
*/ | ||
private async embeddingWithRetry( | ||
request: DeepInfraEmbeddingsRequest | ||
): Promise<DeepInfraEmbeddingsResponse> { | ||
const response = await this.caller.call(() => | ||
fetch(`https://api.deepinfra.com/v1/inference/${this.modelName}`, { | ||
method: "POST", | ||
headers: { | ||
Authorization: `Bearer ${this.apiToken}`, | ||
"Content-Type": "application/json", | ||
}, | ||
body: JSON.stringify(request), | ||
}).then((res) => res.json()) | ||
); | ||
return response as DeepInfraEmbeddingsResponse; | ||
} | ||
} |
Oops, something went wrong.