Skip to content

Commit

Permalink
tests[patch]: run standard tests for embeddings and populate embeddin…
Browse files Browse the repository at this point in the history
…gs API ref (#28545)

plus minor updates to chat models and vector store API refs
  • Loading branch information
ccurme authored Dec 5, 2024
1 parent 1581857 commit ecdfc98
Show file tree
Hide file tree
Showing 6 changed files with 212 additions and 31 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -75,29 +75,30 @@ def _validate_tool_call_message_no_args(message: BaseMessage) -> None:
class ChatModelIntegrationTests(ChatModelTests):
"""Base class for chat model integration tests.
Test subclasses must implement the following two properties:
Test subclasses must implement the ``chat_model_class`` and
``chat_model_params`` properties to specify what model to test and its
initialization parameters.
chat_model_class
The chat model class to test, e.g., ``ChatParrotLink``.
Example:
Example:
.. code-block:: python
.. code-block:: python
@property
def chat_model_class(self) -> Type[ChatParrotLink]:
return ChatParrotLink
from typing import Type
chat_model_params
Initialization parameters for the chat model.
from langchain_tests.integration_tests import ChatModelIntegrationTests
from my_package.chat_models import MyChatModel
Example:
.. code-block:: python
class TestMyChatModelIntegration(ChatModelIntegrationTests):
@property
def chat_model_class(self) -> Type[MyChatModel]:
# Return the chat model class to test here
return MyChatModel
@property
def chat_model_params(self) -> dict:
return {"model": "bird-brain-001", "temperature": 0}
# Return initialization parameters for the model.
return {"model": "model-001", "temperature": 0}
.. note::
API references for individual test methods include troubleshooting tips.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,47 @@


class EmbeddingsIntegrationTests(EmbeddingsTests):
"""Base class for embeddings integration tests.
Test subclasses must implement the ``embeddings_class`` property to specify the
embeddings model to be tested. You can also override the
``embedding_model_params`` property to specify initialization parameters.
Example:
.. code-block:: python
from typing import Type
from langchain_tests.integration_tests import EmbeddingsIntegrationTests
from my_package.embeddings import MyEmbeddingsModel
class TestMyEmbeddingsModelIntegration(EmbeddingsIntegrationTests):
@property
def embeddings_class(self) -> Type[MyEmbeddingsModel]:
# Return the embeddings model class to test here
return MyEmbeddingsModel
@property
def embedding_model_params(self) -> dict:
# Return initialization parameters for the model.
return {"model": "model-001"}
.. note::
API references for individual test methods include troubleshooting tips.
"""

def test_embed_query(self, model: Embeddings) -> None:
"""Test embedding a string query.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of floats when calling ``.embed_query`` on a string.
2. The length of the list is consistent across different inputs.
""" # noqa: E501
embedding_1 = model.embed_query("foo")

assert isinstance(embedding_1, List)
Expand All @@ -18,6 +58,15 @@ def test_embed_query(self, model: Embeddings) -> None:
assert len(embedding_1) == len(embedding_2)

def test_embed_documents(self, model: Embeddings) -> None:
"""Test embedding a list of strings.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of lists of floats when calling ``.embed_documents`` on a list of strings.
2. The length of each list is the same.
""" # noqa: E501
documents = ["foo", "bar", "baz"]
embeddings = model.embed_documents(documents)

Expand All @@ -28,6 +77,15 @@ def test_embed_documents(self, model: Embeddings) -> None:
assert all(len(embedding) == len(embeddings[0]) for embedding in embeddings)

async def test_aembed_query(self, model: Embeddings) -> None:
"""Test embedding a string query async.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of floats when calling ``.aembed_query`` on a string.
2. The length of the list is consistent across different inputs.
""" # noqa: E501
embedding_1 = await model.aembed_query("foo")

assert isinstance(embedding_1, List)
Expand All @@ -39,6 +97,15 @@ async def test_aembed_query(self, model: Embeddings) -> None:
assert len(embedding_1) == len(embedding_2)

async def test_aembed_documents(self, model: Embeddings) -> None:
"""Test embedding a list of strings async.
.. dropdown:: Troubleshooting
If this test fails, check that:
1. The model will generate a list of lists of floats when calling ``.aembed_documents`` on a list of strings.
2. The length of each list is the same.
""" # noqa: E501
documents = ["foo", "bar", "baz"]
embeddings = await model.aembed_documents(documents)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,8 @@ def vectorstore(self) -> Generator[VectorStore, None, None]: # type: ignore
store.delete_collection()
pass
.. note::
API references for individual test methods include troubleshooting tips.
""" # noqa: E501

@abstractmethod
Expand Down Expand Up @@ -445,6 +447,8 @@ async def vectorstore(self) -> AsyncGenerator[VectorStore, None]: # type: ignor
store.delete_collection()
pass
.. note::
API references for individual test methods include troubleshooting tips.
""" # noqa: E501

@abstractmethod
Expand Down
32 changes: 17 additions & 15 deletions libs/standard-tests/langchain_tests/unit_tests/chat_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -380,29 +380,30 @@ def supported_usage_metadata_details(
class ChatModelUnitTests(ChatModelTests):
"""Base class for chat model unit tests.
Test subclasses must implement the following two properties:
Test subclasses must implement the ``chat_model_class`` and
``chat_model_params`` properties to specify what model to test and its
initialization parameters.
chat_model_class
The chat model class to test, e.g., ``ChatParrotLink``.
Example:
Example:
.. code-block:: python
.. code-block:: python
from typing import Type
@property
def chat_model_class(self) -> Type[ChatParrotLink]:
return ChatParrotLink
from langchain_tests.unit_tests import ChatModelUnitTests
from my_package.chat_models import MyChatModel
chat_model_params
Initialization parameters for the chat model.
Example:
.. code-block:: python
class TestMyChatModelUnit(ChatModelUnitTests):
@property
def chat_model_class(self) -> Type[MyChatModel]:
# Return the chat model class to test here
return MyChatModel
@property
def chat_model_params(self) -> dict:
return {"model": "bird-brain-001", "temperature": 0}
# Return initialization parameters for the model.
return {"model": "model-001", "temperature": 0}
.. note::
API references for individual test methods include troubleshooting tips.
Expand Down Expand Up @@ -486,7 +487,8 @@ def test_init_from_env(self) -> None:
.. dropdown:: Troubleshooting
If this test fails, ensure that ``init_from_env_params`` is specified
correctly.
correctly and that model parameters are properly set from environment
variables during initialization.
"""
env_params, model_params, expected_attrs = self.init_from_env_params
if not env_params:
Expand Down
85 changes: 83 additions & 2 deletions libs/standard-tests/langchain_tests/unit_tests/embeddings.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,17 +25,98 @@ def model(self) -> Embeddings:


class EmbeddingsUnitTests(EmbeddingsTests):
"""Base class for embeddings unit tests.
Test subclasses must implement the ``embeddings_class`` property to specify the
embeddings model to be tested. You can also override the
``embedding_model_params`` property to specify initialization parameters.
Example:
.. code-block:: python
from typing import Type
from langchain_tests.unit_tests import EmbeddingsUnitTests
from my_package.embeddings import MyEmbeddingsModel
class TestMyEmbeddingsModelUnit(EmbeddingsUnitTests):
@property
def embeddings_class(self) -> Type[MyEmbeddingsModel]:
# Return the embeddings model class to test here
return MyEmbeddingsModel
@property
def embedding_model_params(self) -> dict:
# Return initialization parameters for the model.
return {"model": "model-001"}
.. note::
API references for individual test methods include troubleshooting tips.
Testing initialization from environment variables
Overriding the ``init_from_env_params`` property will enable additional tests
for initialization from environment variables. See below for details.
.. dropdown:: init_from_env_params
This property is used in unit tests to test initialization from
environment variables. It should return a tuple of three dictionaries
that specify the environment variables, additional initialization args,
and expected instance attributes to check.
Defaults to empty dicts. If not overridden, the test is skipped.
Example:
.. code-block:: python
@property
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
return (
{
"MY_API_KEY": "api_key",
},
{
"model": "model-001",
},
{
"my_api_key": "api_key",
},
)
""" # noqa: E501

def test_init(self) -> None:
"""Test model initialization.
.. dropdown:: Troubleshooting
If this test fails, ensure that ``embedding_model_params`` is specified
and the model can be initialized from those params.
"""
model = self.embeddings_class(**self.embedding_model_params)
assert model is not None

@property
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
"""Return env vars, init args, and expected instance attrs for initializing
from env vars."""
"""This property is used in unit tests to test initialization from environment
variables. It should return a tuple of three dictionaries that specify the
environment variables, additional initialization args, and expected instance
attributes to check."""
return {}, {}, {}

def test_init_from_env(self) -> None:
"""Test initialization from environment variables. Relies on the
``init_from_env_params`` property. Test is skipped if that property is not
set.
.. dropdown:: Troubleshooting
If this test fails, ensure that ``init_from_env_params`` is specified
correctly and that model parameters are properly set from environment
variables during initialization.
"""
env_params, embeddings_params, expected_attrs = self.init_from_env_params
if env_params:
with mock.patch.dict(os.environ, env_params):
Expand Down
26 changes: 26 additions & 0 deletions libs/standard-tests/tests/unit_tests/test_embeddings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
from typing import Type

from langchain_core.embeddings import DeterministicFakeEmbedding, Embeddings

from langchain_tests.integration_tests import EmbeddingsIntegrationTests
from langchain_tests.unit_tests import EmbeddingsUnitTests


class TestFakeEmbeddingsUnit(EmbeddingsUnitTests):
@property
def embeddings_class(self) -> Type[Embeddings]:
return DeterministicFakeEmbedding

@property
def embedding_model_params(self) -> dict:
return {"size": 6} # embedding dimension


class TestFakeEmbeddingsIntegration(EmbeddingsIntegrationTests):
@property
def embeddings_class(self) -> Type[Embeddings]:
return DeterministicFakeEmbedding

@property
def embedding_model_params(self) -> dict:
return {"size": 6}

0 comments on commit ecdfc98

Please sign in to comment.