-
Notifications
You must be signed in to change notification settings - Fork 705
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
53c7840
commit a30bc37
Showing
3 changed files
with
194 additions
and
194 deletions.
There are no files selected for viewing
194 changes: 194 additions & 0 deletions
194
sdk/python/kubeflow/training/api/training_client_create_job_unittest.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
import multiprocessing | ||
import pytest | ||
from unittest.mock import patch, Mock | ||
|
||
from typing import Optional | ||
from kubeflow.training import TrainingClient | ||
from kubeflow.training import KubeflowOrgV1ReplicaSpec | ||
from kubeflow.training import KubeflowOrgV1PyTorchJob | ||
from kubeflow.training import KubeflowOrgV1PyTorchJobSpec | ||
from kubeflow.training import KubeflowOrgV1RunPolicy | ||
from kubeflow.training import KubeflowOrgV1SchedulingPolicy | ||
from kubeflow.training import constants | ||
|
||
from kubernetes.client import V1PodTemplateSpec | ||
from kubernetes.client import V1ObjectMeta | ||
from kubernetes.client import V1PodSpec | ||
from kubernetes.client import V1Container | ||
from kubernetes.client import V1ResourceRequirements | ||
|
||
|
||
def create_namespaced_custom_object_response(*args, **kwargs): | ||
if args[2] == "timeout": | ||
raise multiprocessing.TimeoutError() | ||
elif args[2] == "runtime": | ||
raise RuntimeError() | ||
|
||
|
||
def generate_container() -> V1Container: | ||
return V1Container( | ||
name="pytorch", | ||
image="gcr.io/kubeflow-ci/pytorch-dist-mnist-test:v1.0", | ||
args=["--backend", "gloo"], | ||
resources=V1ResourceRequirements(limits={"memory": "1Gi", "cpu": "0.4"}), | ||
) | ||
|
||
|
||
def generate_pytorchjob( | ||
job_namespace: str, | ||
master: KubeflowOrgV1ReplicaSpec, | ||
worker: KubeflowOrgV1ReplicaSpec, | ||
scheduling_policy: Optional[KubeflowOrgV1SchedulingPolicy] = None, | ||
) -> KubeflowOrgV1PyTorchJob: | ||
return KubeflowOrgV1PyTorchJob( | ||
api_version=constants.API_VERSION, | ||
kind=constants.PYTORCHJOB_KIND, | ||
metadata=V1ObjectMeta(name="pytorchjob-mnist-ci-test", namespace=job_namespace), | ||
spec=KubeflowOrgV1PyTorchJobSpec( | ||
run_policy=KubeflowOrgV1RunPolicy( | ||
clean_pod_policy="None", | ||
scheduling_policy=scheduling_policy, | ||
), | ||
pytorch_replica_specs={"Master": master, "Worker": worker}, | ||
), | ||
) | ||
|
||
|
||
def create_job(): | ||
job_namespace = "test" | ||
container = generate_container() | ||
master = KubeflowOrgV1ReplicaSpec( | ||
replicas=1, | ||
restart_policy="OnFailure", | ||
template=V1PodTemplateSpec( | ||
metadata=V1ObjectMeta( | ||
annotations={constants.ISTIO_SIDECAR_INJECTION: "false"} | ||
), | ||
spec=V1PodSpec(containers=[container]), | ||
), | ||
) | ||
|
||
worker = KubeflowOrgV1ReplicaSpec( | ||
replicas=1, | ||
restart_policy="OnFailure", | ||
template=V1PodTemplateSpec( | ||
metadata=V1ObjectMeta( | ||
annotations={constants.ISTIO_SIDECAR_INJECTION: "false"} | ||
), | ||
spec=V1PodSpec(containers=[container]), | ||
), | ||
) | ||
pytorchjob = generate_pytorchjob(job_namespace, master, worker) | ||
return pytorchjob | ||
|
||
|
||
class DummyJobClass: | ||
def __init__(self, kind) -> None: | ||
self.kind = kind | ||
|
||
|
||
test_data = [ | ||
( | ||
"invalid extra parameter", | ||
{"job": create_job(), "namespace": "test", "base_image": "test_image"}, | ||
ValueError, | ||
), | ||
("invalid job kind", {"job_kind": "invalid_job_kind"}, ValueError), | ||
( | ||
"job name missing ", | ||
{"train_func": lambda: "test train function"}, | ||
ValueError, | ||
), | ||
("job name missing", {"base_image": "test_image"}, ValueError), | ||
( | ||
"uncallable train function", | ||
{"name": "test job", "train_func": "uncallable train function"}, | ||
ValueError, | ||
), | ||
( | ||
"invalid TFJob replica", | ||
{ | ||
"name": "test job", | ||
"train_func": lambda: "test train function", | ||
"job_kind": constants.TFJOB_KIND, | ||
}, | ||
ValueError, | ||
), | ||
( | ||
"invalid PyTorchJob replica", | ||
{ | ||
"name": "test job", | ||
"train_func": lambda: "test train function", | ||
"job_kind": constants.PYTORCHJOB_KIND, | ||
}, | ||
ValueError, | ||
), | ||
( | ||
"invalid pod template spec parameters", | ||
{ | ||
"name": "test job", | ||
"train_func": lambda: "test train function", | ||
"job_kind": constants.MXJOB_KIND, | ||
}, | ||
KeyError, | ||
), | ||
( | ||
"paddle job can't be created using function", | ||
{ | ||
"name": "test job", | ||
"train_func": lambda: "test train function", | ||
"job_kind": constants.PADDLEJOB_KIND, | ||
}, | ||
ValueError, | ||
), | ||
( | ||
"invalid job object", | ||
{"job": DummyJobClass(constants.TFJOB_KIND)}, | ||
ValueError, | ||
), | ||
( | ||
"create_namespaced_custom_object timeout error", | ||
{"job": create_job(), "namespace": "timeout"}, | ||
TimeoutError, | ||
), | ||
( | ||
"create_namespaced_custom_object runtime error", | ||
{"job": create_job(), "namespace": "runtime"}, | ||
RuntimeError, | ||
), | ||
( | ||
"valid flow", | ||
{"job": create_job(), "namespace": "test"}, | ||
"success", | ||
), | ||
] | ||
|
||
|
||
@pytest.fixture | ||
def training_client(): | ||
with patch( | ||
"kubernetes.client.CustomObjectsApi", | ||
return_value=Mock( | ||
create_namespaced_custom_object=Mock( | ||
side_effect=create_namespaced_custom_object_response | ||
) | ||
), | ||
), patch("kubernetes.client.CoreV1Api", return_value=Mock()), patch( | ||
"kubernetes.config.load_kube_config", return_value=Mock() | ||
): | ||
client = TrainingClient(job_kind=constants.PYTORCHJOB_KIND) | ||
yield client | ||
|
||
|
||
@pytest.mark.parametrize("test_name,kwargs,expected_output", test_data) | ||
def test_create_job(training_client, test_name, kwargs, expected_output): | ||
""" | ||
test create_job function of training client | ||
""" | ||
print("Executing test:", test_name) | ||
try: | ||
training_client.create_job(**kwargs) | ||
assert expected_output == "success" | ||
except Exception as e: | ||
assert type(e) == expected_output | ||
print("test execution complete") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.