Skip to content

Commit

Permalink
adding bug fix in gen-sdk.sh and unit test for create_job function in…
Browse files Browse the repository at this point in the history
… training client
  • Loading branch information
deepanker13 committed Oct 27, 2023
1 parent 9fe0999 commit 02748d3
Show file tree
Hide file tree
Showing 2 changed files with 126 additions and 1 deletion.
2 changes: 1 addition & 1 deletion hack/python-sdk/gen-sdk.sh
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ echo "Generating swagger file ..."
go run "${repo_root}"/hack/swagger/main.go ${VERSION} >"${SWAGGER_CODEGEN_FILE}"

echo "Removing previously generated files ..."
rm -rf "${SDK_OUTPUT_PATH}"/docs/V1*.md "${SDK_OUTPUT_PATH}"/kubeflow/training/models "${SDK_OUTPUT_PATH}"/kubeflow/training/*.py "${SDK_OUTPUT_PATH}"/test/test_*.py
rm -rf "${SDK_OUTPUT_PATH}"/docs/KubeflowOrgV1*.md "${SDK_OUTPUT_PATH}"/kubeflow/training/models "${SDK_OUTPUT_PATH}"/kubeflow/training/*.py "${SDK_OUTPUT_PATH}"/test/test_*.py
echo "Generating Python SDK for Training Operator ..."
java -jar "${SWAGGER_CODEGEN_JAR}" generate -i "${repo_root}"/hack/python-sdk/swagger.json -g python -o "${SDK_OUTPUT_PATH}" -c "${SWAGGER_CODEGEN_CONF}"

Expand Down
125 changes: 125 additions & 0 deletions sdk/python/test/test_training_client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import multiprocessing
import unittest
from unittest.mock import patch, Mock
from parameterized import parameterized

from typing import Optional
from kubeflow.training import TrainingClient
from kubeflow.training import KubeflowOrgV1ReplicaSpec
from kubeflow.training import KubeflowOrgV1PyTorchJob
from kubeflow.training import KubeflowOrgV1PyTorchJobSpec
from kubeflow.training import KubeflowOrgV1RunPolicy
from kubeflow.training import KubeflowOrgV1SchedulingPolicy
from kubeflow.training import constants

from kubernetes.client import V1PodTemplateSpec
from kubernetes.client import V1ObjectMeta
from kubernetes.client import V1PodSpec
from kubernetes.client import V1Container
from kubernetes.client import V1ResourceRequirements

CONTAINER_NAME = "pytorch"
JOB_NAME = "pytorchjob-mnist-ci-test"

def create_namespaced_custom_object_response(*args, **kwargs):
if args[2] == 'timeout':
raise multiprocessing.TimeoutError()
elif args[2] == 'runtime':
raise RuntimeError()

def generate_container() -> V1Container:
return V1Container(
name=CONTAINER_NAME,
image="gcr.io/kubeflow-ci/pytorch-dist-mnist-test:v1.0",
args=["--backend", "gloo"],
resources=V1ResourceRequirements(limits={"memory": '1Gi', "cpu": "0.4"}),
)

def generate_pytorchjob(
job_namespace: str,
master: KubeflowOrgV1ReplicaSpec,
worker: KubeflowOrgV1ReplicaSpec,
scheduling_policy: Optional[KubeflowOrgV1SchedulingPolicy] = None,
) -> KubeflowOrgV1PyTorchJob:
return KubeflowOrgV1PyTorchJob(
api_version=constants.API_VERSION,
kind=constants.PYTORCHJOB_KIND,
metadata=V1ObjectMeta(name=JOB_NAME, namespace=job_namespace),
spec=KubeflowOrgV1PyTorchJobSpec(
run_policy=KubeflowOrgV1RunPolicy(
clean_pod_policy="None",
scheduling_policy=scheduling_policy,
),
pytorch_replica_specs={"Master": master, "Worker": worker},
),
)

def create_job():
job_namespace = "test"
container = generate_container()
master = KubeflowOrgV1ReplicaSpec(
replicas=1,
restart_policy="OnFailure",
template=V1PodTemplateSpec(
metadata=V1ObjectMeta(
annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}
),
spec=V1PodSpec(containers=[container]),
),
)

worker = KubeflowOrgV1ReplicaSpec(
replicas=1,
restart_policy="OnFailure",
template=V1PodTemplateSpec(
metadata=V1ObjectMeta(
annotations={constants.ISTIO_SIDECAR_INJECTION: "false"}
),
spec=V1PodSpec(containers=[container]),
),
)
pytorchjob = generate_pytorchjob(job_namespace, master, worker)
return pytorchjob

class DummyJobClass:
def __init__(self,kind) -> None:
self.kind = kind

class TestTrainingClient(unittest.TestCase):

@patch('kubernetes.client.CustomObjectsApi', return_value=Mock(create_namespaced_custom_object=Mock(side_effect=create_namespaced_custom_object_response)))
@patch('kubernetes.client.CoreV1Api', return_value=Mock())
@patch('kubernetes.config.load_kube_config', return_value=Mock())
def setUp(self, mock_custom_api, mock_core_api, mock_load_kube_config) -> None:
self.training_client = TrainingClient(job_kind=constants.PYTORCHJOB_KIND)


@parameterized.expand([
("invalid extra parameter", {"job":create_job(), "namespace": "test", "base_image":"test_image" },ValueError),
("invalid job kind", {"job_kind": "invalid_job_kind" },ValueError),
("job name missing ", {"train_func": lambda: "test train function"}, ValueError),
("job name missing", {"base_image":"test_image"}, ValueError),
("uncallable train function", {"name": "test job", "train_func":"uncallable train function"}, ValueError),
("invalid TFJob replica", {"name": "test job", "train_func": lambda: "test train function", "job_kind": constants.TFJOB_KIND }, ValueError ),
("invalid PyTorchJob replica", {"name": "test job", "train_func": lambda: "test train function","job_kind": constants.PYTORCHJOB_KIND }, ValueError ),
("invalid pod template spec parameters", {"name": "test job", "train_func": lambda: "test train function","job_kind": constants.MXJOB_KIND }, KeyError ),
("paddle job can't be created using function", {"name": "test job", "train_func": lambda: "test train function","job_kind": constants.PADDLEJOB_KIND }, ValueError ),
("invalid job object", {"job": DummyJobClass(constants.TFJOB_KIND)}, ValueError),
("create_namespaced_custom_object timeout error", {"job":create_job(), "namespace": "timeout" },TimeoutError),
("create_namespaced_custom_object runtime error", {"job":create_job(), "namespace": "runtime" },RuntimeError),
])
def test_create_job(self,test_name, kwargs, expected_output ):
"""
test create_job function of training client
"""
print("Executing test:", test_name)
try:
self.training_client.create_job(**kwargs)
except Exception as e:
self.assertEqual(type(e),expected_output)
print("test execution complete")


if __name__ == '__main__':
unittest.main()

0 comments on commit 02748d3

Please sign in to comment.