-
Notifications
You must be signed in to change notification settings - Fork 444
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Electronic-Waste <[email protected]>
- Loading branch information
1 parent
867c40a
commit acc853b
Showing
1 changed file
with
313 additions
and
0 deletions.
There are no files selected for viewing
313 changes: 313 additions & 0 deletions
313
examples/v1beta1/sdk/mnist-with-push-metrics-collection.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,313 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Tune and Train with Push-based Metrics Collection Using MNIST\n", | ||
"\n", | ||
"In this Notebook we are going to do the following:\n", | ||
"- Train PyTorch MNIST image classification model(CNN).\n", | ||
"- Improve the model HyperParameters with [Kubeflow Katib](https://www.kubeflow.org/docs/components/katib/overview/).\n", | ||
"- Use Push-based Metrics Collection to efficiently collect metrics in the training containers." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Install Kubeflow Python SDKs\n", | ||
"\n", | ||
"You need to install Kubeflow SDKs to run this Notebook." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# TODO (Electronic-Waste): Change to release version when SDK with the updated `tune()` is published.\n", | ||
"%pip install git+https://github.com/kubeflow/katib.git#subdirectory=sdk/python/v1beta1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create Train Script for CNN Model\n", | ||
"\n", | ||
"This is simple **Convolutional Neural Network (CNN)** model for recognizing hand-written digits using [MNIST Dataset](https://yann.lecun.com/exdb/mnist/)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def train_mnist_model(parameters):\n", | ||
" import torch\n", | ||
" import logging\n", | ||
" import kubeflow.katib as katib\n", | ||
" from torchvision import datasets, transforms\n", | ||
"\n", | ||
" logging.basicConfig(\n", | ||
" format=\"%(asctime)s %(levelname)-8s %(message)s\",\n", | ||
" datefmt=\"%Y-%m-%dT%H:%M:%SZ\",\n", | ||
" level=logging.INFO,\n", | ||
" )\n", | ||
" logging.info(\"--------------------------------------------------------------------------------------\")\n", | ||
" logging.info(f\"Input Parameters: {parameters}\")\n", | ||
" logging.info(\"--------------------------------------------------------------------------------------\\n\\n\")\n", | ||
"\n", | ||
" # Get HyperParameters from the input params dict.\n", | ||
" lr = float(parameters[\"lr\"])\n", | ||
" momentum = float(parameters[\"momentum\"])\n", | ||
" batch_size = int(parameters[\"batch_size\"])\n", | ||
" num_epoch = int(parameters[\"num_epoch\"])\n", | ||
" log_interval = int(parameters[\"log_interval\"])\n", | ||
"\n", | ||
" # Prepare MNIST Dataset.\n", | ||
" def mnist_train_dataset(batch_size):\n", | ||
" return torch.utils.data.DataLoader(\n", | ||
" datasets.FashionMNIST(\n", | ||
" \"./data\",\n", | ||
" train=True,\n", | ||
" download=True,\n", | ||
" transform=transforms.Compose([transforms.ToTensor()]),\n", | ||
" ),\n", | ||
" batch_size=batch_size,\n", | ||
" shuffle=True,\n", | ||
" )\n", | ||
"\n", | ||
" def mnist_test_dataset(batch_size):\n", | ||
" return torch.utils.data.DataLoader(\n", | ||
" datasets.FashionMNIST(\n", | ||
" \"./data\", train=False, transform=transforms.Compose([transforms.ToTensor()])\n", | ||
" ),\n", | ||
" batch_size=batch_size,\n", | ||
" shuffle=False,\n", | ||
" )\n", | ||
" \n", | ||
" # Build CNN Model.\n", | ||
" def build_and_compile_cnn_model():\n", | ||
" return torch.nn.Sequential(\n", | ||
" torch.nn.Conv2d(1, 20, 5, 1),\n", | ||
" torch.nn.ReLU(),\n", | ||
" torch.nn.MaxPool2d(2, 2),\n", | ||
" \n", | ||
" torch.nn.Conv2d(20, 50, 5, 1),\n", | ||
" torch.nn.ReLU(),\n", | ||
" torch.nn.MaxPool2d(2, 2),\n", | ||
" \n", | ||
" torch.nn.Flatten(),\n", | ||
" \n", | ||
" torch.nn.Linear(4 * 4 * 50, 500),\n", | ||
" torch.nn.ReLU(),\n", | ||
" \n", | ||
" torch.nn.Linear(500, 10),\n", | ||
" torch.nn.LogSoftmax(dim=1)\n", | ||
" )\n", | ||
" \n", | ||
" # Train CNN Model.\n", | ||
" def train_cnn_model(model, train_loader, optimizer, epoch):\n", | ||
" model.train()\n", | ||
" for batch_idx, (data, target) in enumerate(train_loader):\n", | ||
" optimizer.zero_grad()\n", | ||
" output = model(data)\n", | ||
" loss = torch.nn.functional.nll_loss(output, target)\n", | ||
" loss.backward()\n", | ||
" optimizer.step()\n", | ||
" if batch_idx % log_interval == 0:\n", | ||
" msg = \"Train Epoch: {} [{}/{} ({:.0f}%)]\\tloss={:.4f}\".format(\n", | ||
" epoch,\n", | ||
" batch_idx * len(data),\n", | ||
" len(train_loader.dataset),\n", | ||
" 100.0 * batch_idx / len(train_loader),\n", | ||
" loss.item(),\n", | ||
" )\n", | ||
" logging.info(msg)\n", | ||
" \n", | ||
" # Test CNN Model and report training metrics\n", | ||
" def test_cnn_model(model, test_loader):\n", | ||
" model.eval()\n", | ||
" test_loss = 0\n", | ||
" correct = 0\n", | ||
" with torch.no_grad():\n", | ||
" for data, target in test_loader:\n", | ||
" output = model(data)\n", | ||
" test_loss += torch.nn.functional.nll_loss(\n", | ||
" output, target, reduction=\"sum\"\n", | ||
" ).item() # sum up batch loss\n", | ||
" pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability\n", | ||
" correct += pred.eq(target.view_as(pred)).sum().item()\n", | ||
" \n", | ||
" test_loss /= len(test_loader.dataset)\n", | ||
" test_accuracy = float(correct) / len(test_loader.dataset)\n", | ||
" katib.report_metrics({ # report metrics directly without outputing logs\n", | ||
" \"accuracy\": test_accuracy, \n", | ||
" \"loss\": test_loss,\n", | ||
" })\n", | ||
"\n", | ||
" # Download dataset and construct loaders for training and testing\n", | ||
" train_loader = mnist_train_dataset(batch_size)\n", | ||
" test_loader = mnist_test_dataset(batch_size)\n", | ||
"\n", | ||
" # Build Model and Optimizer\n", | ||
" model = build_and_compile_cnn_model()\n", | ||
" optimizer = torch.optim.SGD(model.parameters(), lr, momentum)\n", | ||
"\n", | ||
" # Train Model and report metrics\n", | ||
" for epoch_idx in range(1, num_epoch + 1):\n", | ||
" train_cnn_model(model, train_loader, optimizer, epoch_idx)\n", | ||
" test_cnn_model(model, test_loader)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Start Model Tuning with Katib\n", | ||
"\n", | ||
"If you want to improve your model, you can run HyperParameter tuning with Katib.\n", | ||
"\n", | ||
"The following example uses **Random Search** algorithm to tune HyperParameters.\n", | ||
"\n", | ||
"We are going to tune `learning rate` and `momentum`." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import kubeflow.katib as katib\n", | ||
"\n", | ||
"# Set parameters with their distribution for HyperParameter Tuning with Katib.\n", | ||
"parameters = {\n", | ||
" \"lr\": katib.search.double(min=0.01, max=0.03),\n", | ||
" \"momentum\": katib.search.double(min=0.3, max=0.7),\n", | ||
" \"num_epoch\": 1,\n", | ||
" \"batch_size\": 64,\n", | ||
" \"log_interval\": 10\n", | ||
"}\n", | ||
"\n", | ||
"# Start the Katib Experiment.\n", | ||
"# TODO (Electronic-Waste): \n", | ||
"# 1. Change `kubeflow-katib` to release version when `0.18.0` is ready.\n", | ||
"# 2. Change `base_image` to official image when `kubeflow-katib` release version `0.18.0` is ready.\n", | ||
"exp_name = \"tune-mnist\"\n", | ||
"katib_client = katib.KatibClient(namespace=\"kubeflow\")\n", | ||
"\n", | ||
"katib_client.tune(\n", | ||
" name=exp_name,\n", | ||
" objective=train_mnist_model, # Objective function.\n", | ||
" base_image=\"docker.io/electronicwaste/pytorch:gitv1\",\n", | ||
" parameters=parameters, # HyperParameters to tune.\n", | ||
" algorithm_name=\"random\", # Alorithm to use.\n", | ||
" objective_metric_name=\"accuracy\", # Katib is going to optimize \"accuracy\".\n", | ||
" additional_metric_names=[\"loss\"], # Katib is going to collect these metrics in addition to the objective metric.\n", | ||
" max_trial_count=12, # Trial Threshold.\n", | ||
" parallel_trial_count=2,\n", | ||
" packages_to_install=[\"git+https://github.com/kubeflow/katib.git@master#subdirectory=sdk/python/v1beta1\"],\n", | ||
" metrics_collector_config={\"kind\": \"Push\"},\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Access to Katib UI\n", | ||
"\n", | ||
"You can check created experiment in the Katib UI.\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Get the Best HyperParameters from the Katib Experiment\n", | ||
"\n", | ||
"You can get the best HyperParameters from the most optimal Katib Trial." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Katib Experiment is Succeeded: True\n", | ||
"\n", | ||
"Current Optimal Trial:\n", | ||
"{'best_trial_name': 'tune-mnist-xqwfhr9w',\n", | ||
" 'observation': {'metrics': [{'latest': '0.8276',\n", | ||
" 'max': '0.8276',\n", | ||
" 'min': '0.8276',\n", | ||
" 'name': 'accuracy'},\n", | ||
" {'latest': '0.48769191679954527',\n", | ||
" 'max': '0.48769191679954527',\n", | ||
" 'min': '0.48769191679954527',\n", | ||
" 'name': 'loss'}]},\n", | ||
" 'parameter_assignments': [{'name': 'lr', 'value': '0.024527727574297616'},\n", | ||
" {'name': 'momentum', 'value': '0.6490973329748595'}]}\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"status = katib_client.is_experiment_succeeded(exp_name)\n", | ||
"print(f\"Katib Experiment is Succeeded: {status}\\n\")\n", | ||
"\n", | ||
"best_hps = katib_client.get_optimal_hyperparameters(exp_name)\n", | ||
"print(f\"Current Optimal Trial:\\n{best_hps}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Delete Katib Experiment\n", | ||
"\n", | ||
"When jobs are finished, you can delete the resources." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"katib_client.delete_experiment(exp_name)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "katib", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |