Skip to content

[GSoC] Update tune API for LLM hyperparameters optimization #874

[GSoC] Update tune API for LLM hyperparameters optimization

[GSoC] Update tune API for LLM hyperparameters optimization #874

name: E2E Test with pytorch-mnist
on:
pull_request:
paths-ignore:
- "pkg/ui/v1beta1/frontend/**"
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
e2e:
runs-on: ubuntu-22.04
timeout-minutes: 120
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Setup Test Env
uses: ./.github/workflows/template-setup-e2e-test
with:
kubernetes-version: ${{ matrix.kubernetes-version }}
python-version: "3.10"
- name: Run e2e test with ${{ matrix.experiments }} experiments
uses: ./.github/workflows/template-e2e-test
with:
experiments: ${{ matrix.experiments }}
training-operator: true
# Comma Delimited
trial-images: pytorch-mnist-cpu
strategy:
fail-fast: false
matrix:
kubernetes-version: ["v1.27.11", "v1.28.7", "v1.29.2"]
# Comma Delimited
experiments:
# suggestion-hyperopt
- "long-running-resume,from-volume-resume,median-stop"
# others
- "grid,bayesian-optimization,tpe,multivariate-tpe,cma-es,hyperband"
- "file-metrics-collector,pytorchjob-mnist"
- "median-stop-with-json-format,file-metrics-collector-with-json-format"