-
Notifications
You must be signed in to change notification settings - Fork 180
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
172 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# Submit a MPI job with gpu topology scheduling | ||
|
||
Arena supports gpu topology scheduling For distributed Training. We can enable gpu topology scheduling by adding parameter ``--gputopology``. | ||
Learn more https://help.aliyun.com/document_detail/190482.html | ||
|
||
|
||
## Vgg16 | ||
### Enable gpu topology scheduling | ||
1. Submit a Tensorflow training job with gputopology | ||
```bash | ||
$ arena submit mpi \ | ||
--name=tensorflow-topo-4-vgg16 \ | ||
--gpus=1 \ | ||
--workers=4 \ | ||
--gputopology=true \ | ||
--image=registry.cn-hangzhou.aliyuncs.com/kubernetes-image-hub/tensorflow-benchmark:tf2.3.0-py3.7-cuda10.1 \ | ||
"mpirun --allow-run-as-root -np "4" -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=eth0 -x LD_LIBRARY_PATH -x PATH --mca pml ob1 --mca btl_tcp_if_include eth0 --mca oob_tcp_if_include eth0 --mca orte_keep_fqdn_hostnames t --mca btl ^openib python /tensorflow/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=vgg16 --batch_size=64 --variable_update=horovod" | ||
``` | ||
|
||
2. Get the running status of the current job | ||
```bash | ||
$ arena get tensorflow-topo-4-vgg16 --type mpijob | ||
Name: tensorflow-topo-4-vgg16 | ||
Status: RUNNING | ||
Namespace: default | ||
Priority: N/A | ||
Trainer: MPIJOB | ||
Duration: 2m | ||
|
||
Instances: | ||
NAME STATUS AGE IS_CHIEF GPU(Requested) NODE | ||
---- ------ --- -------- -------------- ---- | ||
tensorflow-topo-4-vgg16-launcher-lmhjl Running 2m true 0 cn-shanghai.192.168.16.172 | ||
tensorflow-topo-4-vgg16-worker-0 Running 2m false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-topo-4-vgg16-worker-1 Running 2m false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-topo-4-vgg16-worker-2 Running 2m false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-topo-4-vgg16-worker-3 Running 2m false 1 cn-shanghai.192.168.16.173 | ||
``` | ||
|
||
3. Get current log information | ||
```bash | ||
$ arena logs -f tensorflow-topo-4-vgg16 | ||
---------------------------------------------------------------- | ||
total images/sec: 991.92 | ||
---------------------------------------------------------------- | ||
``` | ||
|
||
### Disable gpu topology scheduling | ||
1. Submit a Tensorflow training job with gputopology | ||
```bash | ||
$ arena submit mpi \ | ||
--name=tensorflow-4-vgg16 \ | ||
--gpus=1 \ | ||
--workers=4 \ | ||
--image=registry.cn-hangzhou.aliyuncs.com/kubernetes-image-hub/tensorflow-benchmark:tf2.3.0-py3.7-cuda10.1 \ | ||
"mpirun --allow-run-as-root -np "4" -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=eth0 -x LD_LIBRARY_PATH -x PATH --mca pml ob1 --mca btl_tcp_if_include eth0 --mca oob_tcp_if_include eth0 --mca orte_keep_fqdn_hostnames t --mca btl ^openib python /tensorflow/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=vgg16 --batch_size=64 --variable_update=horovod" | ||
``` | ||
|
||
2. Get the running status of the current job | ||
```bash | ||
$ arena get tensorflow-4-vgg16 --type mpijob | ||
Name: tensorflow-4-vgg16 | ||
Status: RUNNING | ||
Namespace: default | ||
Priority: N/A | ||
Trainer: MPIJOB | ||
Duration: 9s | ||
|
||
Instances: | ||
NAME STATUS AGE IS_CHIEF GPU(Requested) NODE | ||
---- ------ --- -------- -------------- ---- | ||
tensorflow-4-vgg16-launcher-xc28k Running 9s true 0 cn-shanghai.192.168.16.172 | ||
tensorflow-4-vgg16-worker-0 Running 9s false 1 cn-shanghai.192.168.16.172 | ||
tensorflow-4-vgg16-worker-1 Running 9s false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-4-vgg16-worker-2 Running 9s false 1 cn-shanghai.192.168.16.172 | ||
tensorflow-4-vgg16-worker-3 Running 9s false 1 cn-shanghai.192.168.16.173 | ||
``` | ||
|
||
3. Get current log information | ||
```bash | ||
$ arena logs -f tensorflow-4-vgg16 | ||
---------------------------------------------------------------- | ||
total images/sec: 200.47 | ||
---------------------------------------------------------------- | ||
``` | ||
|
||
## resnet50 | ||
### Enable gpu topology scheduling | ||
1. Submit a Tensorflow training job with gputopology | ||
```bash | ||
$ arena submit mpi \ | ||
--name=tensorflow-topo-4-resnet50 \ | ||
--gpus=1 \ | ||
--workers=4 \ | ||
--gputopology=true \ | ||
--image=registry.cn-hangzhou.aliyuncs.com/kubernetes-image-hub/tensorflow-benchmark:tf2.3.0-py3.7-cuda10.1 \ | ||
"mpirun --allow-run-as-root -np "4" -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=eth0 -x LD_LIBRARY_PATH -x PATH --mca pml ob1 --mca btl_tcp_if_include eth0 --mca oob_tcp_if_include eth0 --mca orte_keep_fqdn_hostnames t --mca btl ^openib python /tensorflow/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=resnet50 --batch_size=64 --variable_update=horovod" | ||
``` | ||
|
||
2. Get the running status of the current job | ||
```bash | ||
$ arena get tensorflow-topo-4-resnet50 --type mpijob | ||
Name: tensorflow-topo-4-resnet50 | ||
Status: RUNNING | ||
Namespace: default | ||
Priority: N/A | ||
Trainer: MPIJOB | ||
Duration: 8s | ||
|
||
Instances: | ||
NAME STATUS AGE IS_CHIEF GPU(Requested) NODE | ||
---- ------ --- -------- -------------- ---- | ||
tensorflow-topo-4-resnet50-launcher-7ln8j Running 8s true 0 cn-shanghai.192.168.16.172 | ||
tensorflow-topo-4-resnet50-worker-0 Running 8s false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-topo-4-resnet50-worker-1 Running 8s false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-topo-4-resnet50-worker-2 Running 8s false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-topo-4-resnet50-worker-3 Running 8s false 1 cn-shanghai.192.168.16.173 | ||
``` | ||
|
||
3. Get current log information | ||
```bash | ||
$ arena logs -f tensorflow-topo-4-resnet50 | ||
---------------------------------------------------------------- | ||
total images/sec: 1471.55 | ||
---------------------------------------------------------------- | ||
``` | ||
|
||
### Disable gpu topology scheduling | ||
1. Submit a Tensorflow training job with gputopology | ||
```bash | ||
$ arena submit mpi \ | ||
--name=tensorflow-4-resnet50 \ | ||
--gpus=1 \ | ||
--workers=4 \ | ||
--image=registry.cn-hangzhou.aliyuncs.com/kubernetes-image-hub/tensorflow-benchmark:tf2.3.0-py3.7-cuda10.1 \ | ||
"mpirun --allow-run-as-root -np "4" -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=eth0 -x LD_LIBRARY_PATH -x PATH --mca pml ob1 --mca btl_tcp_if_include eth0 --mca oob_tcp_if_include eth0 --mca orte_keep_fqdn_hostnames t --mca btl ^openib python /tensorflow/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=resnet50 --batch_size=64 --variable_update=horovod" | ||
``` | ||
|
||
2. Get the running status of the current job | ||
```bash | ||
$ arena get tensorflow-4-resnet50 --type mpijob | ||
Name: tensorflow-4-resnet50 | ||
Status: RUNNING | ||
Namespace: default | ||
Priority: N/A | ||
Trainer: MPIJOB | ||
Duration: 9s | ||
|
||
Instances: | ||
NAME STATUS AGE IS_CHIEF GPU(Requested) NODE | ||
---- ------ --- -------- -------------- ---- | ||
tensorflow-4-resnet50-launcher-q24hv Running 9s true 0 cn-shanghai.192.168.16.172 | ||
tensorflow-4-resnet50-worker-0 Running 9s false 1 cn-shanghai.192.168.16.172 | ||
tensorflow-4-resnet50-worker-1 Running 9s false 1 cn-shanghai.192.168.16.173 | ||
tensorflow-4-resnet50-worker-2 Running 9s false 1 cn-shanghai.192.168.16.172 | ||
tensorflow-4-resnet50-worker-3 Running 9s false 1 cn-shanghai.192.168.16.173 | ||
``` | ||
|
||
3. Get current log information | ||
```bash | ||
$ arena logs -f tensorflow-4-resnet50 | ||
---------------------------------------------------------------- | ||
total images/sec: 745.38 | ||
---------------------------------------------------------------- | ||
``` | ||
|
||
## Performance Comparison | ||
![image](tensorflow-performance-comparison.png) | ||
|
||
Based on the comparison results of the above four test cases, as shown in the figure above, the performance comparison results show that after GPU topology scheduling, tensorflow distributed training has a good improvement effect. | ||
Note: the result of GPU topology aware scheduling promotion has a certain relationship with the model used by users and the cluster environment. Users can refer to the above examples to evaluate their own model. |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.