Skip to content

Commit

Permalink
fix(metrics, FCIL Paradigm FL Paradigm): pylint error
Browse files Browse the repository at this point in the history
Signed-off-by: Marchons <[email protected]>
  • Loading branch information
Yoda-wu committed Oct 2, 2024
1 parent aee0358 commit 7abe302
Show file tree
Hide file tree
Showing 24 changed files with 506 additions and 106 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -289,7 +289,11 @@ def evaluation(self, testdataset_files, incremental_round):
current_forget_rate = (
max_acc_sum / len(old_class_acc_list) if incremental_round > 0 else 0.0
)
tavk_avg_acc = self.system_metric_info[SystemMetricType.TASK_AVG_ACC.value][
"accuracy"
]
LOGGER.info(
f"for current round: {incremental_round} forget rate: {current_forget_rate} task avg acc: {self.system_metric_info[SystemMetricType.TASK_AVG_ACC.value]['accuracy']}"
f"for current round: {incremental_round} forget rate: {current_forget_rate}"
f"task avg acc: {tavk_avg_acc}"
)
return current_forget_rate
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,11 @@ def run(self):
return test_res, self.system_metric_info

def get_all_train_data(self):
"""Get all train data for the paradigm of federated learning.
Returns:
list: train data list
"""
split_time = 1 # only one split ——all the data
return self._split_dataset(split_time)

Expand Down
50 changes: 25 additions & 25 deletions core/testcasecontroller/metrics/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,8 +39,7 @@ def samples_transfer_ratio_func(system_metric_info: dict):
"""

info = system_metric_info.get(
SystemMetricType.SAMPLES_TRANSFER_RATIO.value)
info = system_metric_info.get(SystemMetricType.SAMPLES_TRANSFER_RATIO.value)
inference_num = 0
transfer_num = 0
for inference_data, transfer_data in info:
Expand All @@ -53,8 +52,7 @@ def compute(key, matrix):
"""
Compute BWT and FWT scores for a given matrix.
"""
print(
f"compute function: key={key}, matrix={matrix}, type(matrix)={type(matrix)}")
print(f"compute function: key={key}, matrix={matrix}, type(matrix)={type(matrix)}")

length = len(matrix)
accuracy = 0.0
Expand All @@ -63,7 +61,7 @@ def compute(key, matrix):
flag = True

for row in matrix:
if not isinstance(row, list) or len(row) != length-1:
if not isinstance(row, list) or len(row) != length - 1:
flag = False
break

Expand All @@ -72,30 +70,29 @@ def compute(key, matrix):
fwt_score = np.nan
return bwt_score, fwt_score

for i in range(length-1):
for j in range(length-1):
if 'accuracy' in matrix[i+1][j] and 'accuracy' in matrix[i][j]:
accuracy += matrix[i+1][j]['accuracy']
bwt_score += matrix[i+1][j]['accuracy'] - \
matrix[i][j]['accuracy']
for i in range(length - 1):
for j in range(length - 1):
if "accuracy" in matrix[i + 1][j] and "accuracy" in matrix[i][j]:
accuracy += matrix[i + 1][j]["accuracy"]
bwt_score += matrix[i + 1][j]["accuracy"] - matrix[i][j]["accuracy"]

for i in range(0, length-1):
if 'accuracy' in matrix[i][i] and 'accuracy' in matrix[0][i]:
fwt_score += matrix[i][i]['accuracy'] - matrix[0][i]['accuracy']
for i in range(0, length - 1):
if "accuracy" in matrix[i][i] and "accuracy" in matrix[0][i]:
fwt_score += matrix[i][i]["accuracy"] - matrix[0][i]["accuracy"]

accuracy = accuracy / ((length-1) * (length-1))
bwt_score = bwt_score / ((length-1) * (length-1))
fwt_score = fwt_score / (length-1)
accuracy = accuracy / ((length - 1) * (length - 1))
bwt_score = bwt_score / ((length - 1) * (length - 1))
fwt_score = fwt_score / (length - 1)

print(f"{key} BWT_score: {bwt_score}")
print(f"{key} FWT_score: {fwt_score}")

my_matrix = []
for i in range(length-1):
for i in range(length - 1):
my_matrix.append([])
for j in range(length-1):
if 'accuracy' in matrix[i+1][j]:
my_matrix[i].append(matrix[i+1][j]['accuracy'])
for j in range(length - 1):
if "accuracy" in matrix[i + 1][j]:
my_matrix[i].append(matrix[i + 1][j]["accuracy"])

return my_matrix, bwt_score, fwt_score

Expand Down Expand Up @@ -141,7 +138,8 @@ def task_avg_acc_func(system_metric_info: dict):
compute task average accuracy
"""
info = system_metric_info.get(SystemMetricType.TASK_AVG_ACC.value)
return info["accuracy"]
return round(info["accuracy"], 3)


def forget_rate_func(system_metric_info: dict):
"""
Expand All @@ -150,7 +148,7 @@ def forget_rate_func(system_metric_info: dict):
info = system_metric_info.get(SystemMetricType.FORGET_RATE.value)
forget_rate = np.mean(info)
print(f"forget_rate: {forget_rate}")
return forget_rate
return round(forget_rate, 3)


def get_metric_func(metric_dict: dict):
Expand All @@ -176,10 +174,12 @@ def get_metric_func(metric_dict: dict):
try:
load_module(url)
metric_func = ClassFactory.get_cls(
type_name=ClassType.GENERAL, t_cls_name=name)
type_name=ClassType.GENERAL, t_cls_name=name
)
return name, metric_func
except Exception as err:
raise RuntimeError(
f"get metric func(url={url}) failed, error: {err}.") from err
f"get metric func(url={url}) failed, error: {err}."
) from err

return name, getattr(sys.modules[__name__], str.lower(name) + "_func")
10 changes: 8 additions & 2 deletions core/testenvmanager/dataset/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@ def process_dataset(self):
self.test_url = self._process_index_file(self.test_url)

# pylint: disable=too-many-arguments
# pylint: disable=too-many-positional-arguments
def split_dataset(self, dataset_url, dataset_format, ratio, method="default",
dataset_types=None, output_dir=None, times=1):
"""
Expand Down Expand Up @@ -203,13 +204,15 @@ def _read_data_file(cls, data_file, data_format):

return data

# pylint: disable=too-many-positional-arguments
def _get_dataset_file(self, data, output_dir, dataset_type, index, dataset_format):
data_file = self._get_file_url(output_dir, dataset_type, index, dataset_format)

self._write_data_file(data, data_file, dataset_format)

return data_file

# pylint: disable=too-many-positional-arguments
def _splitting_more_times(self, data_file, data_format, ratio,
data_types=None, output_dir=None, times=1):
if not data_types:
Expand Down Expand Up @@ -243,6 +246,7 @@ def _splitting_more_times(self, data_file, data_format, ratio,

return data_files

# pylint: disable=too-many-positional-arguments
def _fwt_splitting(self, data_file, data_format, ratio,
data_types=None, output_dir=None, times=1):
if not data_types:
Expand Down Expand Up @@ -280,7 +284,8 @@ def _fwt_splitting(self, data_file, data_format, ratio,
index += 1

return data_files


# pylint: disable=too-many-positional-arguments
# add new splitting method for semantic segmentation
def _city_splitting(self, data_file, data_format, ratio,
data_types=None, output_dir=None, times=1):
Expand Down Expand Up @@ -325,7 +330,8 @@ def _city_splitting(self, data_file, data_format, ratio,
index += 1

return data_files


# pylint: disable=too-many-positional-arguments
def _hard_example_splitting(self, data_file, data_format, ratio,
data_types=None, output_dir=None, times=1):
if not data_types:
Expand Down
2 changes: 0 additions & 2 deletions core/testenvmanager/dataset/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@ def read_data_from_file_to_npy(files: BaseDataSource):
"""
x_train = []
y_train = []
LOGGER.info(f"{files.x}, {files.y}")
for i, file in enumerate(files.x):
x_data = np.load(file)
# print(x_data.shape)
Expand All @@ -47,7 +46,6 @@ def read_data_from_file_to_npy(files: BaseDataSource):
y_train.append(y_data)
x_train = np.concatenate(x_train, axis=0)
y_train = np.concatenate(y_train, axis=0)
print(x_train.shape, y_train.shape)
return x_train, y_train


Expand Down
58 changes: 40 additions & 18 deletions examples/cifar100/fci_ssl/fed_ci_match/algorithm/FedCiMatch.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,8 @@ def __init__(
self.learning_rate = learning_rate
self.memory_size = memory_size
self.task_size = None
self.warm_up_round = 1
self.accept_threshold = 0.85
self.warm_up_round = 4
self.accept_threshold = 0.95
self.old_task_id = -1

self.classifier = None
Expand All @@ -69,8 +69,12 @@ def __init__(

def build_feature_extractor(self):
feature_extractor = resnet10()

feature_extractor.build(input_shape=(None, 32, 32, 3))
feature_extractor.call(keras.Input(shape=(32, 32, 3)))
feature_extractor.load_weights(
"examples/cifar100/fci_ssl/fed_ci_match/algorithm/feature_extractor.weights.h5"
)
return feature_extractor

def build_classifier(self):
Expand Down Expand Up @@ -298,11 +302,15 @@ def train(self, round):
all_params.extend(self.classifier.trainable_variables)

for epoch in range(self.epochs):
# for (labeled_data, unlabeled_data) in zip(self.labeled_train_loader, self.unlabeled_train_loader):
for step, (labeled_x, labeled_y) in enumerate(self.labeled_train_loader):
for labeled_data, unlabeled_data in zip(
self.labeled_train_loader, self.unlabeled_train_loader
):
# for step, (labeled_x, labeled_y) in enumerate(self.labeled_train_loader):
# print(labeled_data.shape)
# labeled_x, labeled_y = labeled_data
# unlabeled_x, weak_unlabeled_x, strong_unlabeled_x, unlabeled_y = unlabeled_data
labeled_x, labeled_y = labeled_data
unlabeled_x, weak_unlabeled_x, strong_unlabeled_x, unlabeled_y = (
unlabeled_data
)
with tf.GradientTape() as tape:
input = self.feature_extractor(inputs=labeled_x, training=True)
y_pred = self.classifier(inputs=input, training=True)
Expand All @@ -314,15 +322,21 @@ def train(self, round):
tf.cast(tf.equal(label_pred, labeled_y), dtype=tf.int32)
)
CE_loss = self.supervised_loss(labeled_x, labeled_y)
KD_loss = self.distil_loss(labeled_x, labeled_y, q, step)
KD_loss = self.distil_loss(labeled_x, labeled_y)
# loss = tf.reduce_mean(keras.losses.sparse_categorical_crossentropy(labeled_y, y_pred, from_logits=True))
# if round > self.warm_up_round:
# unsupervised_loss = self.unsupervised_loss(weak_unlabeled_x, strong_unlabeled_x, unlabeled_x)
supervised_loss = CE_loss
# logging.info(f"supervised loss: {supervised_loss}")
# if epoch > self.warm_up_round:
# unsupervised_loss = self.unsupervised_loss(
# weak_unlabeled_x, strong_unlabeled_x, unlabeled_x
# )
# logging.info(f"unsupervised loss: {unsupervised_loss}")
# loss = 0.5 * supervised_loss + 0.5 * unsupervised_loss
loss = CE_loss if KD_loss == 0 else CE_loss + 0.4 * KD_loss
loss = CE_loss
# else:
# loss = supervised_loss
loss = CE_loss + KD_loss
logging.info(
f"epoch {epoch} step {step} loss: {loss} correct {correct} and total {labeled_x.shape[0]} class is {np.unique(labeled_y)}"
f"epoch {epoch} loss: {loss} correct {correct} and total {labeled_x.shape[0]} class is {np.unique(labeled_y)}"
)
grads = tape.gradient(loss, all_params)
optimizer.apply_gradients(zip(grads, all_params))
Expand All @@ -349,7 +363,7 @@ def supervised_loss(self, x, y):

return loss

def distil_loss(self, x, y, q, step):
def distil_loss(self, x, y):
KD_loss = 0

if len(self.learned_classes) > 0 and self.best_old_model is not None:
Expand Down Expand Up @@ -386,15 +400,23 @@ def distil_loss(self, x, y, q, step):
return KD_loss

def unsupervised_loss(self, weak_x, strong_x, x):
prob_on_wux = tf.nn.softmax(self.model_call(weak_x, training=True))
prob_on_wux = tf.nn.softmax(
self.classifier(
self.feature_extractor(weak_x, training=True), training=True
)
)
pseudo_mask = tf.cast(
tf.reduce_max(prob_on_wux, axis=1) > self.accept_threshold, tf.float32
)
pse_uy = tf.one_hot(tf.argmax(prob_on_wux, axis=1), depth=self.num_classes)
prob_on_sux = tf.nn.softmax(self.model_call(strong_x, training=True))
loss = keras.losses.categorical_crossentropy(
pse_uy, prob_on_sux, from_logits=True
pse_uy = tf.one_hot(
tf.argmax(prob_on_wux, axis=1), depth=self.num_classes
).numpy()
prob_on_sux = tf.nn.softmax(
self.classifier(
self.feature_extractor(strong_x, training=True), training=True
)
)
loss = keras.losses.categorical_crossentropy(pse_uy, prob_on_sux)
loss = tf.reduce_mean(loss * pseudo_mask)
return loss

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,13 @@ algorithm:
fl_data_setting:
train_ratio: 1.0
splitting_method: "default"
label_data_ratio: 1.0
label_data_ratio: 0.3
data_partition: "iid"
initial_model_url: "/home/wyd/ianvs/project/init_model/cnn.pb"

modules:
- type: "basemodel"
name: "FedCILMatch"
name: "FediCarl-Client"
url: "./examples/cifar100/fci_ssl/fed_ci_match/algorithm/basemodel.py"
hyperparameters:
- batch_size:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
logging.getLogger().setLevel(logging.INFO)


@ClassFactory.register(ClassType.GENERAL, alias="FedCILMatch")
@ClassFactory.register(ClassType.GENERAL, alias="FediCarl-Client")
class BaseModel:
def __init__(self, **kwargs) -> None:
self.kwargs = kwargs
Expand Down
Binary file not shown.
Loading

0 comments on commit 7abe302

Please sign in to comment.