Skip to content
/ Rainbow Public
forked from Kaixhin/Rainbow

Rainbow: Combining Improvements in Deep Reinforcement Learning

License

Notifications You must be signed in to change notification settings

kmkmkr/Rainbow

 
 

Repository files navigation

Rainbow

MIT License

Rainbow: Combining Improvements in Deep Reinforcement Learning [1].

Results and pretrained models can be found in the releases.

  • DQN [2]
  • Double DQN [3]
  • Prioritised Experience Replay [4]
  • Dueling Network Architecture [5]
  • Multi-step Returns [6]
  • Distributional RL [7]
  • Noisy Nets [8]

Run the original Rainbow with the default arguments:

python main.py

Data-efficient Rainbow [9] can be run using the following options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps):

python main.py --target-update 2000 \
               --T-max 100000 \
               --learn-start 1600 \
               --memory-capacity 100000 \
               --replay-frequency 1 \
               --multi-step 20 \
               --architecture data-efficient \
               --hidden-size 256 \
               --learning-rate 0.0001 \
               --evaluation-interval 10000

Note that pretrained models from the 1.3 release used a (slightly) incorrect network architecture. To use these, change the padding in the first convolutional layer from 0 to 1 (DeepMind uses "valid" (no) padding).

Requirements

To install all dependencies with Anaconda run conda env create -f environment.yml and use source activate rainbow to activate the environment.

Available Atari games can be found in the atari-py ROMs folder.

Acknowledgements

References

[1] Rainbow: Combining Improvements in Deep Reinforcement Learning
[2] Playing Atari with Deep Reinforcement Learning
[3] Deep Reinforcement Learning with Double Q-learning
[4] Prioritized Experience Replay
[5] Dueling Network Architectures for Deep Reinforcement Learning
[6] Reinforcement Learning: An Introduction
[7] A Distributional Perspective on Reinforcement Learning
[8] Noisy Networks for Exploration
[9] When to Use Parametric Models in Reinforcement Learning?

About

Rainbow: Combining Improvements in Deep Reinforcement Learning

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%