Skip to content

kj-9/ocrvid

Repository files navigation

ocrvid

PyPI Changelog Tests License

CLI tool to extract text from videos using OCR on macOS.

Note

Currently, this tool only tested and works on macOS 13 or later.

Caution

This tool is still in early development stage. Current v0.x releases are not stable and may have breaking changes.

Installation

Install this tool using pip:

pip install ocrvid

Usage

Usage: ocrvid [OPTIONS] COMMAND [ARGS]...

Options:
  --version  Show the version and exit.
  --help     Show this message and exit.

Commands:
  detect  Run OCR on a single picture, and print the results as json
  langs   Show supported recognition languages
  props   Show properties of video file
  run     Run OCR on a video, and save result as a json file

Run OCR on a video

Use ocrvid run sub command to run ocr on a video file:

Usage: ocrvid run [OPTIONS] INPUT_VIDEO

  Run OCR on a video, and save result as a json file

Options:
  -o, --output FILE            Path to output json file. By default, if you run
                               `ocrvid run some/video.mp4` then the output file
                               will be `./video.json`
  -fd, --frames-dir DIRECTORY  If passed, then save video frames to this
                               directory. By default, frames are not saved.
  -fs, --frame-step INTEGER    Number of frames to skip between each frame to be
                               processed. By default, 100 which means every 100
                               frames, 1 frame will be processed.
  -bs, --by-second FLOAT       If passed, then process 1 frame every N seconds.
                               This option relies on fps metadata of the video.
  -l, --langs TEXT             Prefered languages to detect, ordered by
                               priority. See avalable languages run by `ocrvid
                               langs`. If not passed, language is auto detected.
  --help                       Show this message and exit.

For example, run against the test video file at tests/video/pexels-eva-elijas.mp4 in this repo:

ocrvid run tests/video/pexels-eva-elijas.mp4

Then pexels-eva-elija.json is generated in the current directory which looks like this:

{
    "video_file":"tests/video/pexels-eva-elijas.mp4",
    "frames":[
        {
            "frame_index":0,
            "results":[
                {
                    "text":"INSPIRING WORDS",
                    "confidence":1.0,
                    "bbox":[
                        0.17844826551211515,
                        0.7961793736859821,
                        0.3419540405273438,
                        0.10085802570754931
                    ]
                },
                {
                    "text":"\"Foar kills more dre",
                    "confidence":1.0,
                    "bbox":[
                        0.0724226723609706,
                        0.6839455987759758,
                        0.4780927975972494,
                        0.14592710683043575
                    ]
                },
                {
                    "text":"than failure ever",
                    "confidence":1.0,
                    "bbox":[
                        0.018455287246445035,
                        0.6549868414269003,
                        0.45329265594482426,
                        0.14363905857426462
                    ]
                },
                {
                    "text":"IZY KASSEM",
                    "confidence":0.5,
                    "bbox":[
                        -0.015967150208537523,
                        0.6675747977206025,
                        0.23065692583719888,
                        0.08114868486431293
                    ]
                },
                {
                    "text":"Entrepreneur",
                    "confidence":1.0,
                    "bbox":[
                        0.01941176222542875,
                        0.1353812367971159,
                        0.9058370590209961,
                        0.26137274083956863
                    ]
                }
            ]
        },
...

Show supported languages

You can run ocrvid langs to show supported languages to detect. Results may change depending on running macos version.

On macOS version:

platform.mac_ver()[0]='14.2.1'

Result of ocrvid langs:

en-US
fr-FR
it-IT
de-DE
es-ES
pt-BR
zh-Hans
zh-Hant
yue-Hans
yue-Hant
ko-KR
ja-JP
ru-RU
uk-UA
th-TH
vi-VT

How can I run OCR on YouTube videos?

Take a look at yt-dlp.

Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

cd ocrvid
python -m venv venv
source venv/bin/activate

Now install the dependencies and test dependencies:

pip install -e '.[test]'

To run the tests:

make test