- Accepted at ECCV 2024
- Project page
- ArXiv
Clone this repository and get in it. Then run poetry install --no-root
.
We used the following env.
- Python 3.9.15
- Poetry 1.7.1
- cuda 11.7
See pyproject.toml to check python dependencies.
Follow the instructions here.
If you want to test the method on the CUB, follow the instructions here. You do not have to prepare models for ImageNet.
E.g.: Run ours on ImageNet.
poetry run python visualize.py -c configs/ImageNet_resnet50.json --method "lrp" --heat-quantization --skip-connection-prop-type "flows_skip" --notes "imagenet--type:flows_skip--viz:norm+positive" --all_class --seed 42 --normalize --sign "positive"
E.g.: Visualize attribution maps for water ouzel in ImageNet by our method.
poetry run python oneshot.py -c configs/ImageNet_resnet50.json --method "lrp" --skip-connection-prop-type "flows_skip" --heat-quantization --image-path ./qual/original/water_ouzel.png --label 20 --save-path ./qual/ours/water_ouzel.png --normalize --sign "positive"
See exp.sh
for more examples
@article{otsuki2024layer,
title={{Layer-Wise Relevance Propagation with Conservation Property for ResNet}},
author={Seitaro Otsuki, Tsumugi Iida, F\'elix Doublet, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, Komei Sugiura},
journal={arXiv preprint arXiv:2407.09115},
year={2024},
}
This work is licensed under the BSD-3-Clause-Clear license. To view a copy of this license, see LICENSE.