-
-
Notifications
You must be signed in to change notification settings - Fork 340
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create /autonotebook command for AI generated notebooks (#90)
* Initial autonotebook work. * Working autonotebook. * Adding first autogenerated notebook example. * Removing file. * Adding second autonotebook example. * Cleaning up code, renaming autonotebook to generate. * Minor fixes, adding new example notebook. * Renaming examples subdir.
- Loading branch information
Showing
6 changed files
with
1,563 additions
and
1 deletion.
There are no files selected for viewing
360 changes: 360 additions & 0 deletions
360
examples/generate/Creating Random Arrays with Numpy.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,360 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c46fd5c5", | ||
"metadata": {}, | ||
"source": [ | ||
"# Creating Random Arrays with Numpy" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a2a4149f", | ||
"metadata": {}, | ||
"source": [ | ||
"## Introduction" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "4b488198", | ||
"metadata": {}, | ||
"source": [ | ||
"This notebook was created by [Jupyter AI](https://github.com/jupyterlab/jupyter-ai) with the following prompt:\n", | ||
"\n", | ||
"> /generate Create a Jupyter notebook that shows how to create a random array using numpy." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c6460605", | ||
"metadata": {}, | ||
"source": [ | ||
"This Jupyter notebook demonstrates how to create a random array using numpy. It covers topics such as importing necessary packages, creating a random array, setting the array size and shape, setting the data type of the array, and generating a random array with specified parameters. Each section includes sample code for creating a random array and printing the results. This notebook is useful for anyone looking to generate random arrays in their data analysis or machine learning projects." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "9cfcc84c", | ||
"metadata": {}, | ||
"source": [ | ||
"## Creating a random array" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "4c50ec33", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "02a9481d", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"np.random.seed(123)\n", | ||
"random_array = np.random.rand(3, 4)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "5ed2a6c8", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Random array:\n", | ||
" [[0.69646919 0.28613933 0.22685145 0.55131477]\n", | ||
" [0.71946897 0.42310646 0.9807642 0.68482974]\n", | ||
" [0.4809319 0.39211752 0.34317802 0.72904971]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(\"Random array:\\n\", random_array)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "2e9d4225", | ||
"metadata": {}, | ||
"source": [ | ||
"## Setting the array size and shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "15bfe3cb", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "2aedfee5", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Set the size and shape of the random array\n", | ||
"array_size = (3, 4) # number of rows and columns" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "6dc9a89a", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Create the random array using the specified size and shape\n", | ||
"random_array = np.random.rand(*array_size) # *array_size unpacks the tuple" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "7b4b2ae5", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Random array:\n", | ||
" [[0.43857224 0.0596779 0.39804426 0.73799541]\n", | ||
" [0.18249173 0.17545176 0.53155137 0.53182759]\n", | ||
" [0.63440096 0.84943179 0.72445532 0.61102351]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Print the random array\n", | ||
"print(\"Random array:\\n\", random_array)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "863dd179", | ||
"metadata": {}, | ||
"source": [ | ||
"## Setting the data type of the array" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"id": "fed55a87", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"id": "d2fa2a10", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Set the data type of the random array to be created\n", | ||
"dtype = np.int32" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"id": "9c462fdb", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Set the size and shape of the random array\n", | ||
"array_size = (3, 4) # number of rows and columns" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"id": "ddcf206e", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Create the random array using the specified size, shape, and data type\n", | ||
"random_array = np.random.randint(low=0, high=10, size=array_size, dtype=dtype)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"id": "fcc3d78c", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Random array:\n", | ||
" [[4 6 1 5]\n", | ||
" [6 2 1 8]\n", | ||
" [3 5 0 2]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Print the random array\n", | ||
"print(\"Random array:\\n\", random_array)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f1c81186", | ||
"metadata": {}, | ||
"source": [ | ||
"## Generating a random array with specified parameters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"id": "b0526789", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"id": "9ebd784c", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"array_size = (5, 7) \n", | ||
"min_val = -10\n", | ||
"max_val = 10" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"id": "56567059", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def create_random_array(size, low, high):\n", | ||
" return np.random.randint(low=low, high=high, size=size)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"id": "57c8282d", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"random_array = create_random_array(array_size, min_val, max_val)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"id": "a2c9d87f", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Random array:\n", | ||
" [[ 0 3 8 -6 5 1 2]\n", | ||
" [-4 3 9 6 -4 4 -3]\n", | ||
" [ 1 -3 -9 1 -5 8 7]\n", | ||
" [ 2 8 7 -9 9 2 -1]\n", | ||
" [ 6 7 -7 -7 1 -3 -1]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(\"Random array:\\n\", random_array)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0abd2b89-c2e1-4083-9d4a-29da5a2096c3", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.16" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.