Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for low rank constraint #26

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,13 @@ jobs:
${{ runner.os }}-test-${{ env.cache-name }}-
${{ runner.os }}-test-
${{ runner.os }}-
- name: MOI
shell: julia --project=@. {0}
run: |
using Pkg
Pkg.add([
PackageSpec(name="MathOptInterface", rev="master"),
blegat marked this conversation as resolved.
Show resolved Hide resolved
])
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-runtest@v1
- uses: julia-actions/julia-processcoverage@v1
Expand Down
58 changes: 50 additions & 8 deletions src/MOI_wrapper.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,18 @@ const PIECES_MAP = Dict{String,Int}(
"overallsc" => 8,
)

const _SetWithDotProd = MOI.SetWithDotProducts{
MOI.PositiveSemidefiniteConeTriangle,
MOI.TriangleVectorization{MOI.LowRankMatrix{Cdouble}},
}

const SupportedSets =
Union{MOI.Nonnegatives,MOI.PositiveSemidefiniteConeTriangle}
Union{MOI.Nonnegatives,MOI.PositiveSemidefiniteConeTriangle,_SetWithDotProd}

mutable struct Optimizer <: MOI.AbstractOptimizer
objective_constant::Float64
objective_sign::Int
dot_product::Vector{Union{Nothing,MOI.LowRankMatrix{Cdouble}}}
blksz::Vector{Cptrdiff_t}
blktype::Vector{Cchar}
varmap::Vector{Tuple{Int,Int,Int}} # Variable Index vi -> blk, i, j
Expand Down Expand Up @@ -48,6 +54,7 @@ mutable struct Optimizer <: MOI.AbstractOptimizer
return new(
0.0,
1,
Union{Nothing,MOI.LowRankMatrix{Cdouble}}[],
Cptrdiff_t[],
Cchar[],
Tuple{Int,Int,Int}[],
Expand Down Expand Up @@ -142,6 +149,7 @@ function _new_block(model::Optimizer, set::MOI.Nonnegatives)
blk = length(model.blksz)
for i in 1:MOI.dimension(set)
push!(model.varmap, (blk, i, i))
push!(model.dot_product, nothing)
end
return
end
Expand All @@ -153,11 +161,22 @@ function _new_block(model::Optimizer, set::MOI.PositiveSemidefiniteConeTriangle)
for j in 1:set.side_dimension
for i in 1:j
push!(model.varmap, (blk, i, j))
push!(model.dot_product, nothing)
end
end
return
end

function _new_block(model::Optimizer, set::_SetWithDotProd)
blk = length(model.blksz) + 1
for i in eachindex(set.vectors)
push!(model.varmap, (-blk, i, i))
push!(model.dot_product, set.vectors[i].matrix)
end
_new_block(model, set.set)
return
end

function MOI.add_constrained_variables(model::Optimizer, set::SupportedSets)
reset_solution!(model)
offset = length(model.varmap)
Expand Down Expand Up @@ -239,14 +258,36 @@ function _fill!(
)
for t in MOI.Utilities.canonical(func).terms
blk, i, j = model.varmap[t.variable.value]
_fill_until(model, blk, entptr, type, length(ent))
coef = t.coefficient
if i != j
coef /= 2
_fill_until(model, abs(blk), entptr, type, length(ent))
if type[end] == Cchar('l')
error(
"Can either have one dot product variable or several normal variables in the same constraint",
)
end
if blk < 0
type[end] = Cchar('l')
mat = model.dot_product[t.variable.value]
for i in eachindex(mat.diagonal)
push!(ent, mat.diagonal[i])
push!(row, i)
push!(col, i)
end
for j in axes(mat.factor, 2)
for i in axes(mat.factor, 1)
push!(ent, mat.factor[i, j])
push!(row, i)
push!(col, j)
end
end
else
coef = t.coefficient
if i != j
coef /= 2
end
push!(ent, coef)
push!(row, i)
push!(col, j)
end
push!(ent, coef)
push!(row, i)
push!(col, j)
end
_fill_until(model, length(model.blksz), entptr, type, length(ent))
@assert length(entptr) == length(model.blksz)
Expand Down Expand Up @@ -367,6 +408,7 @@ end
function MOI.empty!(optimizer::Optimizer)
optimizer.objective_constant = 0.0
optimizer.objective_sign = 1
empty!(optimizer.dot_product)
empty!(optimizer.blksz)
empty!(optimizer.blktype)
empty!(optimizer.varmap)
Expand Down
8 changes: 8 additions & 0 deletions test/simple_lowrank.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
blksz = Cptrdiff_t[2]
blktype = Cchar['s']
b = Cdouble[1]
CAinfo_entptr = Csize_t[0, 2, 8]
CAent = Cdouble[1, 1, -0.25, 0.25, -1, 1, 1, 1]
CArow = Csize_t[1, 2, 1, 2, 1, 2, 1, 2]
CAcol = Csize_t[1, 2, 1, 2, 1, 1, 2, 2]
CAinfo_type = Cchar['s', 'l']
File renamed without changes.
42 changes: 35 additions & 7 deletions test/test_simple.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,11 @@ import Random
import MathOptInterface as MOI

# This is `test_conic_PositiveSemidefiniteConeTriangle_VectorOfVariables`
@testset "Solve simple with sdplrlib" begin
include("simple.jl")
@testset "Solve simple with sdplrlib with $file" for file in [
"simple_sparse.jl",
"simple_lowrank.jl",
]
include(file)
# The `925` seed is taken from SDPLR's `main.c`
Random.seed!(925)
ret, R, lambda, ranks, pieces = SDPLR.solve(
Expand All @@ -26,7 +29,7 @@ import MathOptInterface as MOI
@test ranks == Csize_t[2]
end

function simple_model()
function simple_sparse_model()
model = SDPLR.Optimizer()
X, _ = MOI.add_constrained_variables(
model,
Expand All @@ -40,6 +43,30 @@ function simple_model()
return model, X, c
end

function simple_lowrank_model()
model = SDPLR.Optimizer()
A = MOI.LowRankMatrix(
[-1 / 4, 1 / 4],
[
-1.0 1.0
1.0 1.0
],
)
X, _ = MOI.add_constrained_variables(
model,
MOI.SetWithDotProducts(
MOI.PositiveSemidefiniteConeTriangle(2),
[MOI.TriangleVectorization(A)],
),
)
c = MOI.add_constraint(model, 1.0 * X[1], MOI.EqualTo(1.0))
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
obj = 1.0 * X[2] + 1.0 * X[4]
MOI.set(model, MOI.ObjectiveFunction{typeof(obj)}(), obj)
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMIZE_NOT_CALLED
return model, X[2:4], c
end

function simple_test(model, X, c)
atol = rtol = 1e-2
@test MOI.get(model, MOI.TerminationStatus()) == MOI.LOCALLY_SOLVED
Expand All @@ -54,14 +81,15 @@ function simple_test(model, X, c)
@test σ ≈ sigma
end

@testset "MOI wrapper" begin
model, X, c = simple_model()
@testset "MOI wrapper for $f" for f in
[simple_sparse_model, simple_lowrank_model]
model, X, c = f()
MOI.optimize!(model)
simple_test(model, X, c)
end

function _test_limit(attr, val, term)
model, _, _ = simple_model()
model, _, _ = simple_sparse_model()
MOI.set(model, MOI.RawOptimizerAttribute(attr), val)
MOI.optimize!(model)
@test MOI.get(model, MOI.TerminationStatus()) == term
Expand Down Expand Up @@ -89,7 +117,7 @@ end
end

@testset "continuity between solve" begin
model, X, c = simple_model()
model, X, c = simple_sparse_model()
MOI.set(model, MOI.RawOptimizerAttribute("majiter"), SDPLR.MAX_MAJITER - 2)
@test MOI.get(model, MOI.RawOptimizerAttribute("majiter")) ==
SDPLR.MAX_MAJITER - 2
Expand Down
Loading