Skip to content

jprashant21/timeseries_gpr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

Timeseries Forecasting with Gaussian process regression

Objective: Demand Forecasting

Python packages:
Python-dateutil
Pytest
Isoweek
Sklearn
Pandas
Numpy
Datetime

Steps:

  1. Data processing
  2. Seasonality, Trend & Residue extraction
  3. Residue modelling
  4. Residue prediction
  5. Unit test and integration test results

Scripts information:

  • timeseries_modeling_analytics.py
    Arguments:
    sample.csv: sample data csv file
    n: required forecast period for step-2 and step-4
    Trigger command: python portcast_analytics.py sample.csv 6

  • test_cases.py
    Arguments: None
    Trigger command: pytest test_portcast.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages