Skip to content

Commit

Permalink
Revert original change that caused some CI tests to fail and pushed a…
Browse files Browse the repository at this point in the history
… new fix
  • Loading branch information
jordan-d-murphy committed Jan 30, 2024
1 parent 3799b99 commit 637f8ee
Showing 1 changed file with 121 additions and 12 deletions.
133 changes: 121 additions & 12 deletions pandas/core/groupby/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -1176,24 +1176,133 @@ def nsmallest(
result = self._python_apply_general(f, data, not_indexed_same=True)
return result

@doc(Series.idxmin.__doc__)
def idxmin(
self,
axis: Axis | lib.NoDefault = lib.no_default,
skipna: bool = True,
*args,
**kwargs,
self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True
) -> Series:
"""
Return the row label of the minimum value.
If multiple values equal the minimum, the first row label with that
value is returned.
Parameters
----------
axis : {0 or 'index'}
Unused. Parameter needed for compatibility with DataFrame.
skipna : bool, default True
Exclude NA/null values. If the entire Series is NA, the result
will be NA.
Returns
-------
Index
Label of the minimum value.
Raises
------
ValueError
If the Series is empty.
See Also
--------
numpy.argmin : Return indices of the minimum values
along the given axis.
DataFrame.idxmin : Return index of first occurrence of minimum
over requested axis.
Series.idxmax : Return index *label* of the first occurrence
of maximum of values.
Notes
-----
This method is the Series version of ``ndarray.argmin``. This method
returns the label of the minimum, while ``ndarray.argmin`` returns
the position. To get the position, use ``series.values.argmin()``.
Examples
--------
>>> s = pd.Series(data=[1, None, 4, 1],
... index=['A', 'B', 'C', 'D'])
>>> s
A 1.0
B NaN
C 4.0
D 1.0
dtype: float64
>>> s.idxmin()
'A'
If `skipna` is False and there is an NA value in the data,
the function returns ``nan``.
>>> s.idxmin(skipna=False)
nan
"""
return self._idxmax_idxmin("idxmin", axis=axis, skipna=skipna)

@doc(Series.idxmax.__doc__)
def idxmax(
self,
axis: Axis | lib.NoDefault = lib.no_default,
skipna: bool = True,
*args,
**kwargs,
self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True
) -> Series:
"""
Return the row label of the maximum value.
If multiple values equal the maximum, the first row label with that
value is returned.
Parameters
----------
axis : {0 or 'index'}
Unused. Parameter needed for compatibility with DataFrame.
skipna : bool, default True
Exclude NA/null values. If the entire Series is NA, the result
will be NA.
Returns
-------
Index
Label of the maximum value.
Raises
------
ValueError
If the Series is empty.
See Also
--------
numpy.argmax : Return indices of the maximum values
along the given axis.
DataFrame.idxmax : Return index of first occurrence of maximum
over requested axis.
Series.idxmin : Return index *label* of the first occurrence
of minimum of values.
Notes
-----
This method is the Series version of ``ndarray.argmax``. This method
returns the label of the maximum, while ``ndarray.argmax`` returns
the position. To get the position, use ``series.values.argmax()``.
Examples
--------
>>> s = pd.Series(data=[1, None, 4, 3, 4],
... index=['A', 'B', 'C', 'D', 'E'])
>>> s
A 1.0
B NaN
C 4.0
D 3.0
E 4.0
dtype: float64
>>> s.idxmax()
'C'
If `skipna` is False and there is an NA value in the data,
the function returns ``nan``.
>>> s.idxmax(skipna=False)
nan
"""
return self._idxmax_idxmin("idxmax", axis=axis, skipna=skipna)

@doc(Series.corr.__doc__)
Expand Down

0 comments on commit 637f8ee

Please sign in to comment.