-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e2c6375
commit 565d366
Showing
22 changed files
with
1,613 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# Models | ||
|
||
Place `.pth` model files here |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
import argparse | ||
import torch | ||
import os | ||
import sys | ||
import cv2 | ||
import numpy as np | ||
|
||
import utils.architectures.SOFVSR_arch as SOFVSR | ||
from torch.autograd import Variable | ||
import utils.common as util | ||
from utils.colors import * | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('model') | ||
parser.add_argument('--input', default='input', help='Input folder') | ||
parser.add_argument('--output', default='output', help='Output folder') | ||
parser.add_argument('--cpu', action='store_true', | ||
help='Use CPU instead of CUDA') | ||
parser.add_argument('--denoise', action='store_true', | ||
help='Denoise the chroma layers') | ||
parser.add_argument('--chop_forward', action='store_true',) | ||
args = parser.parse_args() | ||
|
||
if not os.path.exists(args.input): | ||
print('Error: Folder [{:s}] does not exist.'.format(args.input)) | ||
sys.exit(1) | ||
elif os.path.isfile(args.input): | ||
print('Error: Folder [{:s}] is a file.'.format(args.input)) | ||
sys.exit(1) | ||
elif os.path.isfile(args.output): | ||
print('Error: Folder [{:s}] is a file.'.format(args.output)) | ||
sys.exit(1) | ||
elif not os.path.exists(args.output): | ||
os.mkdir(args.output) | ||
|
||
device = torch.device('cpu' if args.cpu else 'cuda') | ||
|
||
input_folder = os.path.normpath(args.input) | ||
output_folder = os.path.normpath(args.output) | ||
|
||
def chop_forward(x, model, scale, shave=16, min_size=5000, nGPUs=1, need_HR=False): | ||
# divide into 4 patches | ||
b, n, c, h, w = x.size() | ||
h_half, w_half = h // 2, w // 2 | ||
h_size, w_size = h_half + shave, w_half + shave | ||
inputlist = [ | ||
x[:, :, :, 0:h_size, 0:w_size], | ||
x[:, :, :, 0:h_size, (w - w_size):w], | ||
x[:, :, :, (h - h_size):h, 0:w_size], | ||
x[:, :, :, (h - h_size):h, (w - w_size):w]] | ||
|
||
|
||
if w_size * h_size < min_size: | ||
outputlist = [] | ||
for i in range(0, 4, nGPUs): | ||
input_batch = torch.cat(inputlist[i:(i + nGPUs)], dim=0) | ||
with torch.no_grad(): | ||
model = model.to(device) | ||
_, _, _, output_batch = model(input_batch.to(device)) | ||
outputlist.append(output_batch.data) | ||
else: | ||
outputlist = [ | ||
chop_forward(patch, model, scale, shave, min_size, nGPUs) \ | ||
for patch in inputlist] | ||
|
||
h, w = scale * h, scale * w | ||
h_half, w_half = scale * h_half, scale * w_half | ||
h_size, w_size = scale * h_size, scale * w_size | ||
shave *= scale | ||
|
||
# output = Variable(x.data.new(1, 1, h, w), volatile=True) #UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead. | ||
with torch.no_grad(): | ||
output = Variable(x.data.new(1, 1, h, w)) | ||
for idx, out in enumerate(outputlist): | ||
if len(out.shape) < 4: | ||
outputlist[idx] = out.unsqueeze(0) | ||
output[:, :, 0:h_half, 0:w_half] = outputlist[0][:, :, 0:h_half, 0:w_half] | ||
output[:, :, 0:h_half, w_half:w] = outputlist[1][:, :, 0:h_half, (w_size - w + w_half):w_size] | ||
output[:, :, h_half:h, 0:w_half] = outputlist[2][:, :, (h_size - h + h_half):h_size, 0:w_half] | ||
output[:, :, h_half:h, w_half:w] = outputlist[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size] | ||
|
||
return output.float().cpu() | ||
|
||
|
||
|
||
def main(): | ||
state_dict = torch.load(args.model) | ||
|
||
# Automatic scale detection | ||
keys = state_dict.keys() | ||
if 'OFR.SR.3.weight' in keys: | ||
scale = 1 | ||
elif 'SR.body.6.bias' in keys: | ||
# 2 and 3 share the same architecture keys so here we check the shape | ||
if state_dict['SR.body.3.weight'].shape[0] == 256: | ||
scale = 2 | ||
elif state_dict['SR.body.3.weight'].shape[0] == 576: | ||
scale = 3 | ||
elif 'SR.body.9.bias' in keys: | ||
scale = 4 | ||
else: | ||
raise ValueError('Scale could not be determined from model') | ||
|
||
# Extract num_frames from model | ||
frame_size = state_dict['SR.body.0.weight'].shape[1] | ||
num_frames = ((frame_size - 1) // scale ** 2) + 1 | ||
|
||
# Extract num_channels | ||
num_channels = state_dict['OFR.RNN1.0.weight'].shape[0] | ||
|
||
# Create model | ||
model = SOFVSR.SOFVSR(scale=scale, n_frames=num_frames, channels=num_channels) | ||
model.load_state_dict(state_dict) | ||
|
||
|
||
images=[] | ||
for root, _, files in os.walk(input_folder): | ||
for file in sorted(files): | ||
if file.split('.')[-1].lower() in ['png', 'jpg', 'jpeg', 'gif', 'bmp', 'tiff', 'tga']: | ||
images.append(os.path.join(root, file)) | ||
|
||
# pad beginning and end frames so they get included in output | ||
images.insert(0, images[0]) | ||
images.append(images[-1]) | ||
|
||
# Inference loop | ||
for idx, path in enumerate(images[1:-1], 0): | ||
img_name = os.path.splitext(os.path.basename(path))[0] | ||
|
||
idx_center = (num_frames - 1) // 2 | ||
idx_frame = idx | ||
LR_name = images[idx_frame + 1] # center frame | ||
print(idx_frame, img_name) | ||
|
||
# read LR frames | ||
LR_list = [] | ||
LR_bicubic = None | ||
for i_frame in range(num_frames): | ||
# Last and second to last frames | ||
if idx == len(images)-2 and num_frames == 3: | ||
# print("second to last frame:", i_frame) | ||
if i_frame == 0: | ||
LR_img = cv2.imread(images[idx_frame], cv2.IMREAD_COLOR) | ||
else: | ||
LR_img = cv2.imread(images[idx_frame+1], cv2.IMREAD_COLOR) | ||
elif idx == len(images)-1 and num_frames == 3: | ||
# print("last frame:", i_frame) | ||
LR_img = cv2.imread(images[idx_frame], cv2.IMREAD_COLOR) | ||
# Every other internal frame | ||
else: | ||
# print("normal frame:", idx_frame) | ||
LR_img = cv2.imread(images[idx_frame+i_frame], cv2.IMREAD_COLOR) | ||
|
||
# get the bicubic upscale of the center frame to concatenate for SR | ||
if i_frame == idx_center: | ||
if args.denoise: | ||
LR_bicubic = cv2.blur(LR_img, (3,3)) | ||
else: | ||
LR_bicubic = LR_img | ||
LR_bicubic = util.imresize_np(img=LR_bicubic, scale=scale) # bicubic upscale | ||
|
||
# extract Y channel from frames | ||
# normal path, only Y for both | ||
LR_img = util.bgr2ycbcr(LR_img, only_y=True) | ||
|
||
# expand Y images to add the channel dimension | ||
# normal path, only Y for both | ||
LR_img = util.fix_img_channels(LR_img, 1) | ||
|
||
LR_list.append(LR_img) # h, w, c | ||
|
||
LR = np.concatenate((LR_list), axis=2) # h, w, t | ||
|
||
LR = util.np2tensor(LR, bgr2rgb=False, add_batch=True) # Tensor, [CT',H',W'] or [T, H, W] | ||
|
||
# generate Cr, Cb channels using bicubic interpolation | ||
LR_bicubic = util.bgr2ycbcr(LR_bicubic, only_y=False) | ||
LR_bicubic = util.np2tensor(LR_bicubic, bgr2rgb=False, add_batch=True) | ||
|
||
if len(LR.size()) == 4: | ||
b, n_frames, h_lr, w_lr = LR.size() | ||
LR = LR.view(b, -1, 1, h_lr, w_lr) # b, t, c, h, w | ||
|
||
if args.chop_forward: | ||
|
||
# crop borders to ensure each patch can be divisible by 2 | ||
_, _, _, h, w = LR.size() | ||
h = int(h//16) * 16 | ||
w = int(w//16) * 16 | ||
LR = LR[:, :, :, :h, :w] | ||
if isinstance(LR_bicubic, torch.Tensor): | ||
SR_cb = LR_bicubic[:, 1, :h * scale, :w * scale] | ||
SR_cr = LR_bicubic[:, 2, :h * scale, :w * scale] | ||
|
||
SR_y = chop_forward(LR, model, scale).squeeze(0) | ||
sr_img = ycbcr_to_rgb(torch.stack((SR_y, SR_cb, SR_cr), -3)) | ||
else: | ||
|
||
with torch.no_grad(): | ||
model.to(device) | ||
_, _, _, fake_H = model(LR.to(device)) | ||
|
||
SR = fake_H.detach()[0].float().cpu() | ||
SR_cb = LR_bicubic[:, 1, :, :] | ||
SR_cr = LR_bicubic[:, 2, :, :] | ||
|
||
sr_img = ycbcr_to_rgb(torch.stack((SR, SR_cb, SR_cr), -3)) | ||
|
||
sr_img = util.tensor2np(sr_img) # uint8 | ||
|
||
# save images | ||
cv2.imwrite(os.path.join(output_folder, os.path.basename(path)), sr_img) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.