Skip to content

Commit

Permalink
disambiguate opposites of suspensions
Browse files Browse the repository at this point in the history
  • Loading branch information
thibautbenjamin committed Oct 3, 2024
1 parent 8b2394e commit 1c742d8
Show file tree
Hide file tree
Showing 3 changed files with 22 additions and 1 deletion.
10 changes: 9 additions & 1 deletion lib/translate_raw.ml
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,13 @@ open Raw_types

exception WrongNumberOfArguments

let rec head_susp = function
| VarR _ -> 0
| Sub (_, _, None, _) -> 0
| Sub (_, _, Some susp, _) -> susp
| Op (_, t) | Inverse t | Unit t -> head_susp t
| Meta | BuiltinR _ | Letin_tm _ -> Error.fatal "ill-formed term"

(* inductive translation on terms and types without let_in *)
let rec tm t =
let make_coh coh s susp expl =
Expand Down Expand Up @@ -32,8 +39,9 @@ let rec tm t =
in
make_coh builtin_coh s susp expl
| Op (l, t) ->
let offset = head_susp t in
let t, meta = tm t in
(Opposite.tm t l, meta)
(Opposite.tm t (List.map (fun x -> x + offset) l), meta)
| Inverse t ->
let t, meta_ctx = tm t in
(Inverse.compute_inverse t, meta_ctx)
Expand Down
7 changes: 7 additions & 0 deletions test.t/features/opposites.catt
Original file line number Diff line number Diff line change
Expand Up @@ -45,3 +45,10 @@ let nested12 (x : *) (y : *) (z : *) (f : x -> y) (f' : x -> y) (f'' : x -> y)
(g : y -> z) (g' : y -> z) (g'' : y -> z)
(c : g -> g') (d : g' -> g'')
= op { 1 2 } (comp [comp d c] [comp b a])

##test interaction of opposites and suspension
coh assoc (x(f)y(g)z(h)w) : comp f (comp g h) -> comp (comp f g) h
coh assoc_susp (p(x(f)y(g)z(h)w)q) : comp f (comp g h) -> comp (comp f g) h
let test (p(x(f)y(g)z(h)w)q)
: (op { 2 } (assoc f g h)) -> (op { 2 } (assoc f g h))
= id (op { 3 } (assoc_susp f g h))
6 changes: 6 additions & 0 deletions test.t/run.t
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,12 @@
[=I.I=] successfully defined term (builtin_comp2_func[1 1]_op{1} x y f f'' (!1builtin_comp2 x y f f' a f'' b) z g g'' (!1builtin_comp2 y z g g' c g'' d)) of type (builtin_comp2_op{1} x y f z g) -> (builtin_comp2_op{1} x y f'' z g'').
[=^.^=] let nested12 = op_{1,2}((_builtin_comp [(_builtin_comp d c)] [(_builtin_comp b a)]))
[=I.I=] successfully defined term (builtin_comp2_func[1 1]_op{1} x y f f'' (!1builtin_comp2 x y f f' a f'' b) z g g'' (!1builtin_comp2 y z g g' c g'' d)) of type (builtin_comp2_op{1} x y f z g) -> (builtin_comp2_op{1} x y f'' z g'').
[=^.^=] coh assoc = (_builtin_comp f (_builtin_comp g h)) -> (_builtin_comp (_builtin_comp f g) h)
[=I.I=] successfully defined assoc.
[=^.^=] coh assoc_susp = (_builtin_comp f (_builtin_comp g h)) -> (_builtin_comp (_builtin_comp f g) h)
[=I.I=] successfully defined assoc_susp.
[=^.^=] let test = (_builtin_id op_{3}((assoc_susp f g h)))
[=I.I=] successfully defined term (!3builtin_id p q x w (!1builtin_comp2 p q x z (!1builtin_comp2 p q x y f z g) w h) (!1builtin_comp2 p q x y f w (!1builtin_comp2 p q y z g w h)) (assoc_susp_op{3} p q x y f z g w h)) of type (assoc_susp_op{3} p q x y f z g w h) -> (assoc_susp_op{3} p q x y f z g w h).

$ catt features/inverses.catt
[=^.^=] let id_inv = I((_builtin_id x))
Expand Down

0 comments on commit 1c742d8

Please sign in to comment.