Skip to content

Commit

Permalink
Collect relevant item bounds from trait clauses for nested rigid proj…
Browse files Browse the repository at this point in the history
…ections, GATs
  • Loading branch information
compiler-errors committed Sep 25, 2024
1 parent b511753 commit 2dacf7a
Show file tree
Hide file tree
Showing 4 changed files with 286 additions and 10 deletions.
226 changes: 216 additions & 10 deletions compiler/rustc_hir_analysis/src/collect/item_bounds.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_hir as hir;
use rustc_infer::traits::util;
use rustc_middle::ty::fold::shift_vars;
use rustc_middle::ty::{
self, GenericArgs, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
self, GenericArgs, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt,
};
use rustc_middle::{bug, span_bug};
use rustc_span::Span;
Expand Down Expand Up @@ -42,14 +43,110 @@ fn associated_type_bounds<'tcx>(
let trait_def_id = tcx.local_parent(assoc_item_def_id);
let trait_predicates = tcx.trait_explicit_predicates_and_bounds(trait_def_id);

let bounds_from_parent = trait_predicates.predicates.iter().copied().filter(|(pred, _)| {
match pred.kind().skip_binder() {
ty::ClauseKind::Trait(tr) => tr.self_ty() == item_ty,
ty::ClauseKind::Projection(proj) => proj.projection_term.self_ty() == item_ty,
ty::ClauseKind::TypeOutlives(outlives) => outlives.0 == item_ty,
_ => false,
}
});
let item_trait_ref = ty::TraitRef::identity(tcx, tcx.parent(assoc_item_def_id.to_def_id()));
let bounds_from_parent =
trait_predicates.predicates.iter().copied().filter_map(|(pred, span)| {
let mut clause_ty = match pred.kind().skip_binder() {
ty::ClauseKind::Trait(tr) => tr.self_ty(),
ty::ClauseKind::Projection(proj) => proj.projection_term.self_ty(),
ty::ClauseKind::TypeOutlives(outlives) => outlives.0,
_ => return None,
};

// The code below is quite involved, so let me explain.
//
// We loop here, because we also want to collect vars for nested associated items as
// well. For example, given a clause like `Self::A::B`, we want to add that to the
// item bounds for `A`, so that we may use that bound in the case that `Self::A::B` is
// rigid.
//
// Secondly, regarding bound vars, when we see a where clause that mentions a GAT
// like `for<'a, ...> Self::Assoc<'a, ...>: Bound<'b, ...>`, we want to turn that into
// an item bound on the GAT, where all of the GAT args are substituted with the GAT's
// param regions, and then keep all of the other late-bound vars in the bound around.
// We need to "compress" the binder so that it doesn't mention any of those vars that
// were mapped to params.
let gat_vars = loop {
if let ty::Alias(ty::Projection, alias_ty) = *clause_ty.kind() {
if alias_ty.trait_ref(tcx) == item_trait_ref
&& alias_ty.def_id == assoc_item_def_id.to_def_id()
{
break &alias_ty.args[item_trait_ref.args.len()..];
} else {
// Only collect *self* type bounds if the filter is for self.
match filter {
PredicateFilter::SelfOnly | PredicateFilter::SelfThatDefines(_) => {
return None;
}
PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {
}
}

clause_ty = alias_ty.self_ty();
continue;
}
}

return None;
};
// Special-case: No GAT vars, no mapping needed.
if gat_vars.is_empty() {
return Some((pred, span));
}

// First, check that all of the GAT args are substituted with a unique late-bound arg.
// If we find a duplicate, then it can't be mapped to the definition's params.
let mut mapping = FxIndexMap::default();
let generics = tcx.generics_of(assoc_item_def_id);
for (param, var) in std::iter::zip(&generics.own_params, gat_vars) {
let existing = match var.unpack() {
ty::GenericArgKind::Lifetime(re) => {
if let ty::RegionKind::ReBound(ty::INNERMOST, bv) = re.kind() {
mapping.insert(bv.var, tcx.mk_param_from_def(param))
} else {
return None;
}
}
ty::GenericArgKind::Type(ty) => {
if let ty::Bound(ty::INNERMOST, bv) = *ty.kind() {
mapping.insert(bv.var, tcx.mk_param_from_def(param))
} else {
return None;
}
}
ty::GenericArgKind::Const(ct) => {
if let ty::ConstKind::Bound(ty::INNERMOST, bv) = ct.kind() {
mapping.insert(bv, tcx.mk_param_from_def(param))
} else {
return None;
}
}
};

if existing.is_some() {
return None;
}
}

// Finally, map all of the args in the GAT to the params we expect, and compress
// the remaining late-bound vars so that they count up from var 0.
let mut folder = MapAndCompressBoundVars {
tcx,
binder: ty::INNERMOST,
still_bound_vars: vec![],
mapping,
};
let pred = pred.kind().skip_binder().fold_with(&mut folder);

Some((
ty::Binder::bind_with_vars(
pred,
tcx.mk_bound_variable_kinds(&folder.still_bound_vars),
)
.upcast(tcx),
span,
))
});

let all_bounds = tcx.arena.alloc_from_iter(bounds.clauses(tcx).chain(bounds_from_parent));
debug!(
Expand All @@ -63,6 +160,115 @@ fn associated_type_bounds<'tcx>(
all_bounds
}

struct MapAndCompressBoundVars<'tcx> {
tcx: TyCtxt<'tcx>,
/// How deep are we? Makes sure we don't touch the vars of nested binders.
binder: ty::DebruijnIndex,
/// List of bound vars that remain unsubstituted because they were not
/// mentioned in the GAT's args.
still_bound_vars: Vec<ty::BoundVariableKind>,
/// Subtle invariant: If the `GenericArg` is bound, then it should be
/// stored with the debruijn index of `INNERMOST` so it can be shifted
/// correctly during substitution.
mapping: FxIndexMap<ty::BoundVar, ty::GenericArg<'tcx>>,
}

impl<'tcx> TypeFolder<TyCtxt<'tcx>> for MapAndCompressBoundVars<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}

fn fold_binder<T>(&mut self, t: ty::Binder<'tcx, T>) -> ty::Binder<'tcx, T>
where
ty::Binder<'tcx, T>: TypeSuperFoldable<TyCtxt<'tcx>>,
{
self.binder.shift_in(1);
let out = t.super_fold_with(self);
self.binder.shift_out(1);
out
}

fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if !ty.has_bound_vars() {
return ty;
}

if let ty::Bound(binder, old_bound) = *ty.kind()
&& self.binder == binder
{
let mapped = if let Some(mapped) = self.mapping.get(&old_bound.var) {
mapped.expect_ty()
} else {
// If we didn't find a mapped generic, then make a new one.
// Allocate a new var idx, and insert a new bound ty.
let var = ty::BoundVar::from_usize(self.still_bound_vars.len());
self.still_bound_vars.push(ty::BoundVariableKind::Ty(old_bound.kind));
let mapped = Ty::new_bound(self.tcx, ty::INNERMOST, ty::BoundTy {
var,
kind: old_bound.kind,
});
self.mapping.insert(old_bound.var, mapped.into());
mapped
};

shift_vars(self.tcx, mapped, self.binder.as_u32())
} else {
ty.super_fold_with(self)
}
}

fn fold_region(&mut self, re: ty::Region<'tcx>) -> ty::Region<'tcx> {
if let ty::ReBound(binder, old_bound) = re.kind()
&& self.binder == binder
{
let mapped = if let Some(mapped) = self.mapping.get(&old_bound.var) {
mapped.expect_region()
} else {
let var = ty::BoundVar::from_usize(self.still_bound_vars.len());
self.still_bound_vars.push(ty::BoundVariableKind::Region(old_bound.kind));
let mapped = ty::Region::new_bound(self.tcx, ty::INNERMOST, ty::BoundRegion {
var,
kind: old_bound.kind,
});
self.mapping.insert(old_bound.var, mapped.into());
mapped
};

shift_vars(self.tcx, mapped, self.binder.as_u32())
} else {
re
}
}

fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
if !ct.has_bound_vars() {
return ct;
}

if let ty::ConstKind::Bound(binder, old_var) = ct.kind()
&& self.binder == binder
{
let mapped = if let Some(mapped) = self.mapping.get(&old_var) {
mapped.expect_const()
} else {
let var = ty::BoundVar::from_usize(self.still_bound_vars.len());
self.still_bound_vars.push(ty::BoundVariableKind::Const);
let mapped = ty::Const::new_bound(self.tcx, ty::INNERMOST, var);
self.mapping.insert(old_var, mapped.into());
mapped
};

shift_vars(self.tcx, mapped, self.binder.as_u32())
} else {
ct.super_fold_with(self)
}
}

fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
if !p.has_bound_vars() { p } else { p.super_fold_with(self) }
}
}

/// Opaque types don't inherit bounds from their parent: for return position
/// impl trait it isn't possible to write a suitable predicate on the
/// containing function and for type-alias impl trait we don't have a backwards
Expand Down
28 changes: 28 additions & 0 deletions tests/ui/associated-types/imply-relevant-nested-item-bounds-2.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
//@ check-pass
//@ revisions: current next
//@[next] compile-flags: -Znext-solver

trait Trait
where
Self::Assoc: Clone,
{
type Assoc;
}

fn foo<T: Trait>(x: &T::Assoc) -> T::Assoc {
x.clone()
}

trait Trait2
where
Self::Assoc: Iterator,
<Self::Assoc as Iterator>::Item: Clone,
{
type Assoc;
}

fn foo2<T: Trait2>(x: &<T::Assoc as Iterator>::Item) -> <T::Assoc as Iterator>::Item {
x.clone()
}

fn main() {}
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
//@ check-pass

// Test that `for<'a> Self::Gat<'a>: Debug` is implied in the definition of `Foo`,
// just as it would be if it weren't a GAT but just a regular associated type.

use std::fmt::Debug;

trait Foo
where
for<'a> Self::Gat<'a>: Debug,
{
type Gat<'a>;
}

fn test<T: Foo>(x: T::Gat<'static>) {
println!("{:?}", x);
}

fn main() {}
23 changes: 23 additions & 0 deletions tests/ui/associated-types/imply-relevant-nested-item-bounds.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
//@ check-pass
//@ revisions: current next
//@[next] compile-flags: -Znext-solver

trait Foo
where
Self::Iterator: Iterator,
<Self::Iterator as Iterator>::Item: Bar,
{
type Iterator;

fn iter() -> Self::Iterator;
}

trait Bar {
fn bar(&self);
}

fn x<T: Foo>() {
T::iter().next().unwrap().bar();
}

fn main() {}

0 comments on commit 2dacf7a

Please sign in to comment.