Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

using tonic in place of spikedata #267

Merged
merged 2 commits into from
Jan 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
246 changes: 143 additions & 103 deletions examples/dataloaders/DVS_Gesture.ipynb
Original file line number Diff line number Diff line change
@@ -1,69 +1,92 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "DVS_Gesture.ipynb",
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "K7t_qlnTVWWS"
},
"outputs": [],
"source": [
"!pip install snntorch"
],
"execution_count": null,
"outputs": []
"# have you installed snn torch?\n",
"# %pip install snntorch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YpJrTa3XVaSQ"
},
"outputs": [],
"source": [
"import snntorch as snn\n",
"from snntorch.spikevision import spikedata \n",
"from torch.utils.data import DataLoader"
],
"import snntorch as snn\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": []
"metadata": {},
"outputs": [],
"source": [
"DATADIR = \"/tmp/data\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "N7kYJ5reVeDA"
},
"metadata": {},
"source": [
"## Download Dataset"
"## Download Dataset using `spikedata` (deprecated)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kbHJ827iVcYY"
},
"outputs": [],
"source": [
"# note that a default transform is already applied to keep things easy\n",
"# from snntorch.spikevision import spikedata \n",
"# # note that a default transform is already applied to keep things easy\n",
"\n",
"dvs_train = spikedata.DVSGesture(\"data/dvsgesture\", train=True, dt=1000, num_steps=500, ds=1) # ds: spatial compression; dt: temporal compressiondvs_test\n",
"dvs_test = spikedata.DVSGesture(\"data/dvsgesture\", train=False, dt=1000, num_steps=1800, ds=1)"
],
"# train_ds = spikedata.DVSGesture(\"/tmp/data/dvsgesture\", train=True, dt=1000, num_steps=500, ds=1) # ds: spatial compression; dt: temporal compressiondvs_test\n",
"# test_ds = spikedata.DVSGesture(\"/tmp/data/dvsgesture\", train=False, dt=1000, num_steps=1800, ds=1)\n",
"# test_ds"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download Dataset using `tonic`"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": []
"metadata": {},
"outputs": [],
"source": [
"import tonic\n",
"import tonic.transforms as transforms\n",
"\n",
"sensor_size = tonic.datasets.DVSGesture.sensor_size\n",
"\n",
"# Denoise removes isolated, one-off events\n",
"# time_window\n",
"frame_transform = transforms.Compose([transforms.Denoise(filter_time=10000),\n",
" transforms.ToFrame(sensor_size=sensor_size,\n",
" time_window=1000)\n",
" ])\n",
"\n",
"train_ds = tonic.datasets.DVSGesture(save_to=DATADIR, transform=frame_transform, train=True)\n",
"test_ds = tonic.datasets.DVSGesture(save_to=DATADIR, transform=frame_transform, train=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
Expand All @@ -72,22 +95,9 @@
"id": "AWQTG9lhVmKY",
"outputId": "3d607d3e-b416-4a47-e61e-4d562ed52dba"
},
"outputs": [],
"source": [
"dvs_test"
],
"execution_count": 1,
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-1-1b6453ff6f37>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdvs_test\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'dvs_test' is not defined"
]
}
"test_ds"
]
},
{
Expand All @@ -101,93 +111,123 @@
},
{
"cell_type": "code",
"metadata": {
"id": "TWhGAeVLVws5"
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dvs_train_dl = DataLoader(dvs_train, shuffle=True, batch_size=64)\n",
"dvs_test_dl = DataLoader(dvs_test, shuffle=False, batch_size=64)"
],
"from torch.utils.data import DataLoader\n",
"\n",
"train_dl = DataLoader(train_ds, shuffle=True, batch_size=64)\n",
"test_dl = DataLoader(test_ds, shuffle=False, batch_size=64)"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": []
"metadata": {},
"outputs": [],
"source": [
"print('the number of items in the dataset is', len(train_dl.dataset))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Play with Data"
]
},
{
"cell_type": "code",
"metadata": {
"id": "MhwnXKs_VxgZ"
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get a feel for the data\n",
"dvs_train_dl.dataset[0][0].size()"
],
"i_item = 42 # random index into a sample\n",
"data, label = train_dl.dataset[i_item]\n",
"import torch\n",
"data = torch.Tensor(data)\n",
"\n",
"print('The data sample has size', data.shape)\n",
"print(f\"in case you're blind AF, the target is: {label} ({train_ds.classes[label]})\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": []
"metadata": {},
"outputs": [],
"source": [
"train_ds.classes"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i8mEmv8PV9qK"
},
"metadata": {},
"source": [
"## Visualization"
"## Visualize"
]
},
{
"cell_type": "code",
"metadata": {
"id": "iTt_4BlqV3vP"
},
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"n = 3 # random index into a sample\n",
"import matplotlib.pyplot as plt\n",
"import snntorch.spikeplot as splt\n",
"from IPython.display import HTML, display\n",
"import numpy as np\n",
"\n",
"# flatten on-spikes and off-spikes into one channel\n",
"a = (dvs_train_dl.dataset[n][0][:, 0] + dvs_train_dl.dataset[n][0][:, 1])\n",
"print(f\"in case you're blind AF, the target is: {spikedata.dvs_gesture.mapping[dvs_train_dl.dataset[n][1]]}\")\n",
"\n",
"# a = (train_dl.dataset[n][0][:, 0] + train_dl.dataset[n][0][:, 1])\n",
"a = (data[:300, 0, :, :] - data[:300, 1, :, :])\n",
"# a = np.swapaxes(a, 0, -1)\n",
"# Plot\n",
"fig, ax = plt.subplots()\n",
"anim = splt.animator(a, fig, ax, interval=10)\n",
"anim = splt.animator(a, fig, ax, interval=200)\n",
"HTML(anim.to_html5_video())\n",
"\n",
"# anim.save('nmnist_animation.mp4', writer = 'ffmpeg', fps=50) "
],
"execution_count": null,
"outputs": []
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "iDDqdJ1YWBns"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import torch"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "JpiRF7pqV9AJ"
},
"source": [
"plt.imshow(torch.sum(dvs_train_dl.dataset[4][0][:300,0,:,:], axis=0), cmap='hot')\n",
"import torch\n",
"plt.imshow(torch.sum(data[:300, 0,:,:], axis=0), cmap='hot')\n",
"plt.colorbar()"
],
"execution_count": null,
"outputs": []
]
}
],
"metadata": {
"colab": {
"name": "DVS_Gesture.ipynb",
"provenance": []
},
{
"cell_type": "code",
"metadata": {
"id": "7gZariHNWH-X"
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"source": [
"spikedata.dvs_gesture.mapping"
],
"execution_count": null,
"outputs": []
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
]
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Loading
Loading