forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding LoKrModel Class to paddle.peft library (PaddlePaddle#9269)
* passing pre-commit * removing tp and pp logic for single gpu training * add disable_lokr attribute in lokr_layer * refine comments * add lokr tests and modified layer bug * add lokrtests * add lokrtests * add lokr_argument.json * add integration test, fix bugs based on tests. * refactor lora_dim to lokr_dim * no inference * add more tests * resolve merge conflict * add more randtests * pass isort check(maybe)
- Loading branch information
Showing
15 changed files
with
1,297 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
{ | ||
"model_name_or_path": "meta-llama/Meta-Llama-3-8B", | ||
"dataset_name_or_path": "./data", | ||
"output_dir": "./checkpoints/lokr_ckpts", | ||
"lokr": true, | ||
"per_device_train_batch_size": 4, | ||
"gradient_accumulation_steps": 4, | ||
"num_train_epochs": 1, | ||
"learning_rate": 2e-05, | ||
"lr_scheduler_type": "linear", | ||
"attention_probs_dropout_prob": 0, | ||
"hidden_dropout_prob": 0, | ||
"warmup_steps": 30, | ||
"logging_steps": 1, | ||
"evaluation_strategy": "no", | ||
"save_strategy": "steps", | ||
"save_steps": 500, | ||
"src_length": 512, | ||
"max_length": 512, | ||
"bf16": true, | ||
"do_train": true, | ||
"do_eval": false, | ||
"disable_tqdm": false, | ||
"load_best_model_at_end": false, | ||
"eval_with_do_generation": false, | ||
"metric_for_best_model": "accuracy", | ||
"recompute": false, | ||
"save_total_limit": 100, | ||
"fp16_opt_level": "O2", | ||
"sharding": "stage2", | ||
"zero_padding": false, | ||
"use_flash_attention": false, | ||
"unified_checkpoint": true | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import os | ||
|
||
import paddle | ||
|
||
from paddlenlp.peft import LoKrConfig, LoKrModel | ||
from paddlenlp.transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | ||
from paddlenlp.utils.env import CONFIG_NAME | ||
|
||
|
||
def parse_arguments(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model_name_or_path", default=None, help="The directory of pretrained model.") | ||
parser.add_argument("--lokr_path", default="", help="The directory of lokr parameters. Default to None") | ||
parser.add_argument( | ||
"--merge_lokr_model_path", | ||
default="", | ||
help="The directory of merged parameters. Default to None", | ||
) | ||
parser.add_argument("--device", type=str, default="gpu", help="Device") | ||
parser.add_argument( | ||
"--low_gpu_mem", type=bool, default=True, help="Whether to use low gpu memory. Default to False" | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
def weight_process(name, lokr_config, state_dict): | ||
weight = state_dict.pop(name + ".weight") | ||
use_w1 = True if ((name + ".lokr_w1") in state_dict) else False | ||
use_w2 = True if ((name + ".lokr_w2") in state_dict) else False | ||
if use_w1: | ||
lokr_w1 = state_dict.pop(name + ".lokr_w1") | ||
else: | ||
lokr_w1_a = state_dict.pop(name + ".lokr_w1_a") | ||
lokr_w1_b = state_dict.pop(name + ".lokr_w1_b") | ||
if use_w2: | ||
lokr_w2 = state_dict.pop(name + ".lokr_w2") | ||
else: | ||
lokr_w2_a = state_dict.pop(name + ".lokr_w2_a") | ||
lokr_w2_b = state_dict.pop(name + ".lokr_w2_b") | ||
|
||
scaling = lokr_config.lokr_alpha / lokr_config.lokr_dim | ||
|
||
adapter_weight = ( | ||
scaling | ||
* paddle.kron(lokr_w1 if use_w1 else lokr_w1_a @ lokr_w1_b, lokr_w2 if use_w2 else lokr_w2_a @ lokr_w2_b).T | ||
) | ||
state_dict[name + ".weight"] = weight + adapter_weight | ||
|
||
|
||
def merge(): | ||
args = parse_arguments() | ||
paddle.set_device(args.device) | ||
|
||
lokr_config = LoKrConfig.from_pretrained(args.lokr_path) | ||
if lokr_config.base_model_name_or_path is None: | ||
if args.model_name_or_path is not None: | ||
raise ValueError("We can not find a valid model_name_or_path.") | ||
else: | ||
lokr_config.base_model_name_or_path = args.model_name_or_path | ||
|
||
if os.path.isfile(os.path.join(args.lokr_path, CONFIG_NAME)): | ||
config = AutoConfig.from_pretrained(args.lokr_path) | ||
elif args.model_name_or_path is not None: | ||
config = AutoConfig.from_pretrained(args.model_name_or_path) | ||
else: | ||
raise ValueError( | ||
f"We can not find config.json in lokr_path: {args.lokr_path} or find a valid model_name_or_path." | ||
) | ||
config.dtype = lokr_config.dtype | ||
if ( | ||
lokr_config.dtype == "bfloat16" or config.quantization_config.weight_quantize_algo in ["nf4", "fp4"] | ||
) and args.device == "cpu": | ||
raise ValueError("We can not apply bfloat16 or nf4/fp4 lokr merge on cpu.") | ||
|
||
# with device_guard() will cause SVD decomposition to fail | ||
model = AutoModelForCausalLM.from_pretrained( | ||
lokr_config.base_model_name_or_path, | ||
config=config, | ||
low_cpu_mem_usage=True, | ||
) | ||
model = LoKrModel.from_pretrained(model=model, lokr_path=args.lokr_path, lokr_config=lokr_config) | ||
|
||
model.eval() | ||
model_state_dict = model.model.state_dict() | ||
lokr_name_list = [] | ||
|
||
for key in model_state_dict.keys(): | ||
if "lokr" in key: | ||
lokr_name_list.append(key.split(".lokr")[0]) | ||
|
||
lokr_name_list = list(set(lokr_name_list)) | ||
for name in lokr_name_list: | ||
weight_process(name, lokr_config, model_state_dict) | ||
|
||
model.model.save_pretrained(args.merge_lokr_model_path, state_dict=model_state_dict) | ||
tokenizer = AutoTokenizer.from_pretrained(lokr_config.base_model_name_or_path) | ||
tokenizer.save_pretrained(args.merge_lokr_model_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
merge() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from .lokr_config import LoKrConfig | ||
from .lokr_layers import LoKrLinear | ||
from .lokr_model import LoKrModel | ||
|
||
__all__ = ["LoKrConfig", "LoKrModel", "LoKrLinear"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import json | ||
import os | ||
from dataclasses import asdict, dataclass, field | ||
from typing import List, Optional, Union | ||
|
||
from ...utils.env import LOKR_CONFIG_NAME | ||
|
||
|
||
@dataclass | ||
class LoKrConfig: | ||
""" | ||
This is the configuration class to store the configuration of a [`LoKrModel`]. | ||
Convention of LoKrModel: W1 can be named as scaling matrix, W2 can be named as adapter matrix. | ||
Args: | ||
target_modules (`Union[List[str],str]`): The names of the modules to apply Lora to. | ||
trainable_modules (`List[str]`): The names of the modules to train when applying Lora. | ||
lokr_alpha (`float`): The alpha parameter for Lora scaling. | ||
merge_weights (`bool`): | ||
Whether to merge the weights of the Lora layers with the base transformer model in `eval` mode. | ||
""" | ||
|
||
base_model_name_or_path: Optional[str] = field( | ||
default=None, metadata={"help": "The name of the base model to use."} | ||
) | ||
target_modules: Optional[Union[List[str], str]] = field( | ||
default=None, | ||
metadata={ | ||
"help": "List of module names or regex expression of the module names to replace with LoKr." | ||
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' " | ||
}, | ||
) | ||
trainable_modules: Optional[List[str]] = field( | ||
default=None, | ||
metadata={ | ||
"help": "List of module names or regex expression of the module names to train when applying with LoKr." | ||
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' " | ||
}, | ||
) | ||
trainable_bias: Optional[str] = field( | ||
default=None, metadata={"help": "Define trainable bias parameters for the Lora model."} | ||
) | ||
lokr_dim: int = field(default=8, metadata={"help": "Lora dimention in LoKr dimension, for adapter matrix"}) | ||
factor: int = field(default=-1, metadata={"help": "Determine the decomposition size of LoKr matrices"}) | ||
decompose_both: bool = field( | ||
default=False, | ||
metadata={"help": "Determine whether to decomposed both Scaling Matrix and adapter matrix together"}, | ||
) | ||
lokr_alpha: float = field( | ||
default=0.0, metadata={"help": "Determine the scaling of adapter weight, follow lokr convention"} | ||
) | ||
merge_weight: bool = field( | ||
default=False, metadata={"help": "Merge weights of the original model and the Lokr model"} | ||
) | ||
tensor_parallel_degree: int = field(default=-1, metadata={"help": "-1 for not use tensor parallel"}) | ||
dtype: Optional[str] = field(default=None, metadata={"help": "The data type of tensor"}) | ||
|
||
@property | ||
def __dict__(self): | ||
return asdict(self) | ||
|
||
def to_dict(self): | ||
return self.__dict__ | ||
|
||
@property | ||
def scaling(self): | ||
if not (self.lokr_alpha or self.lokr_dim): | ||
return 1.0 | ||
return self.lokr_alpha / self.lokr_dim | ||
|
||
def save_pretrained(self, save_directory): | ||
r""" | ||
This method saves the configuration of your adapter model in a directory. | ||
Args: | ||
save_directory (`str`): | ||
The directory where the configuration will be saved. | ||
""" | ||
if os.path.isfile(save_directory): | ||
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") | ||
|
||
os.makedirs(save_directory, exist_ok=True) | ||
|
||
output_dict = self.__dict__ | ||
output_dict["scaling"] = self.scaling | ||
output_path = os.path.join(save_directory, LOKR_CONFIG_NAME) | ||
|
||
# save it | ||
with open(output_path, "w") as writer: | ||
writer.write(json.dumps(output_dict, indent=2, sort_keys=True)) | ||
|
||
@classmethod | ||
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | ||
r""" | ||
This method loads the configuration of your adapter model from a directory. | ||
Args: | ||
pretrained_model_name_or_path (`str`): | ||
The directory or the hub-id where the configuration is saved. | ||
**kwargs: | ||
Additional keyword arguments passed along to the child class initialization. | ||
""" | ||
if os.path.isfile(os.path.join(pretrained_model_name_or_path, LOKR_CONFIG_NAME)): | ||
config_file = os.path.join(pretrained_model_name_or_path, LOKR_CONFIG_NAME) | ||
else: | ||
raise ValueError(f"Can't find lokr_config.json at '{pretrained_model_name_or_path}'") | ||
|
||
loaded_attributes = cls.from_json_file(config_file) | ||
loaded_attributes.pop("scaling", None) | ||
|
||
config = cls(**kwargs) | ||
|
||
for key, value in loaded_attributes.items(): | ||
if hasattr(config, key): | ||
setattr(config, key, value) | ||
|
||
return config | ||
|
||
@classmethod | ||
def from_json_file(cls, path_json_file): | ||
r""" | ||
Loads a configuration file from a json file. | ||
Args: | ||
path_json_file (`str`): | ||
The path to the json file. | ||
""" | ||
with open(path_json_file, "r") as file: | ||
json_object = json.load(file) | ||
|
||
return json_object |
Oops, something went wrong.