Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add HGNet and HGNetV2 #41

Merged
merged 4 commits into from
Mar 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,8 @@ Reference: [Grad-CAM class activation visualization (keras.io)](https://keras.io
|EfficientNetV2|[ICML 2021](https://arxiv.org/abs/2104.00298)|`timm`|`kimm.models.EfficientNetV2*`|
|GhostNet|[CVPR 2020](https://arxiv.org/abs/1911.11907)|`timm`|`kimm.models.GhostNet*`|
|GhostNetV2|[NeurIPS 2022](https://arxiv.org/abs/2211.12905)|`timm`|`kimm.models.GhostNetV2*`|
|HGNet||`timm`|`kimm.models.HGNet*`|
|HGNetV2||`timm`|`kimm.models.HGNetV2*`|
|InceptionNeXt|[arXiv 2023](https://arxiv.org/abs/2303.16900)|`timm`|`kimm.models.InceptionNeXt*`|
|InceptionV3|[CVPR 2016](https://arxiv.org/abs/1512.00567)|`timm`|`kimm.models.InceptionV3`|
|LCNet|[arXiv 2021](https://arxiv.org/abs/2109.15099)|`timm`|`kimm.models.LCNet*`|
Expand Down
3 changes: 2 additions & 1 deletion kimm/blocks/base_block.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,8 @@ def apply_conv2d_block(
if strides > 1:
padding = "valid"
x = layers.ZeroPadding2D(
(kernel_size[0] // 2, kernel_size[1] // 2), name=f"{name}_pad"
((kernel_size[0] - 1) // 2, (kernel_size[1] - 1) // 2),
name=f"{name}_pad",
)(x)

if not use_depthwise:
Expand Down
1 change: 1 addition & 0 deletions kimm/layers/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from kimm.layers.attention import Attention
from kimm.layers.layer_scale import LayerScale
from kimm.layers.learnable_affine import LearnableAffine
from kimm.layers.mobile_one_conv2d import MobileOneConv2D
from kimm.layers.position_embedding import PositionEmbedding
from kimm.layers.rep_conv2d import RepConv2D
50 changes: 50 additions & 0 deletions kimm/layers/learnable_affine.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
import keras
from keras import layers
from keras import ops


@keras.saving.register_keras_serializable(package="kimm")
class LearnableAffine(layers.Layer):
def __init__(self, scale_value=1.0, bias_value=0.0, **kwargs):
super().__init__(**kwargs)
if isinstance(scale_value, int):
raise ValueError(
f"scale_value must be a integer. Received: {scale_value}"
)
if isinstance(bias_value, int):
raise ValueError(
f"bias_value must be a integer. Received: {bias_value}"
)
self.scale_value = scale_value
self.bias_value = bias_value

def build(self, input_shape):
self.scale = self.add_weight(
shape=(1,),
initializer=lambda shape, dtype: ops.cast(self.scale_value, dtype),
trainable=True,
name="scale",
)
self.bias = self.add_weight(
shape=(1,),
initializer=lambda shape, dtype: ops.cast(self.bias_value, dtype),
trainable=True,
name="bias",
)
self.built = True

def call(self, inputs, training=None, mask=None):
scale = ops.cast(self.scale, self.compute_dtype)
bias = ops.cast(self.bias, self.compute_dtype)
return ops.add(ops.multiply(inputs, scale), bias)

def get_config(self):
config = super().get_config()
config.update(
{
"scale_value": self.scale_value,
"bias_value": self.bias_value,
"name": self.name,
}
)
return config
20 changes: 20 additions & 0 deletions kimm/layers/learnable_affine_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
import pytest
from absl.testing import parameterized
from keras.src import testing

from kimm.layers.learnable_affine import LearnableAffine


class LearnableAffineTest(testing.TestCase, parameterized.TestCase):
@pytest.mark.requires_trainable_backend
def test_layer_scale_basic(self):
self.run_layer_test(
LearnableAffine,
init_kwargs={"scale_value": 1.0, "bias_value": 0.0},
input_shape=(1, 10),
expected_output_shape=(1, 10),
expected_num_trainable_weights=2,
expected_num_non_trainable_weights=0,
expected_num_losses=0,
supports_masking=False,
)
1 change: 1 addition & 0 deletions kimm/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from kimm.models.densenet import * # noqa:F403
from kimm.models.efficientnet import * # noqa:F403
from kimm.models.ghostnet import * # noqa:F403
from kimm.models.hgnet import * # noqa:F403
from kimm.models.inception_next import * # noqa:F403
from kimm.models.inception_v3 import * # noqa:F403
from kimm.models.mobilenet_v2 import * # noqa:F403
Expand Down
Loading