Skip to content

Commit

Permalink
Extension runes
Browse files Browse the repository at this point in the history
  • Loading branch information
imbrem committed Nov 4, 2024
1 parent b51678f commit 1bd4222
Showing 1 changed file with 18 additions and 30 deletions.
48 changes: 18 additions & 30 deletions paper.tex
Original file line number Diff line number Diff line change
Expand Up @@ -3838,6 +3838,22 @@ \subsection{Semantics}
\item Otherwise, compute $\loopmor{\Gamma}{(\wbranch{\ell_i}{x_i}{t_i},)_i}{\ms{L}}$ in a loop,
passing in a fresh copy of the context each time. This is implemented with $\ms{rfix}$.
\end{itemize}
This simplifies significantly in the case of a \ms{where}-block defining just a single label,
yielding
\begin{equation}
\dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}}
= \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}}
; \delta^{-1}
; [\pi_r, \rfix{\dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}, \ell(A)}}}]
\end{equation}
In particular, it is a consequence of label weakening (Lemma~\ref{lem:wk}) that, in the case where
$s$ does not call $\ell$, this simplifies further to
\begin{equation}
\dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}}
= \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}}
; \delta^{-1}
; [\pi_r, \dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}}}]
\end{equation}

\begin{figure}
\begin{equation*}
Expand Down Expand Up @@ -3922,6 +3938,7 @@ \subsection{Metatheory}
$
\label{itm:lbsubstwk}
\end{enumerate}
\label{lem:wk}
\end{lemma}
\begin{proof}
See Appendix~\ref{proof:weakening}
Expand Down Expand Up @@ -5869,13 +5886,6 @@ \section{The Environment Comonad}
\end{itemize}
\end{proof}

\TODO{this is useful because of \ms{where}-lore}

\TODO{$\dnt{\haslb{\Gamma, \bhyp{y}{A}}{[\ell/\kappa]s}{\ms{L}}}
= \rfix{S ; [\ms{id}, \iota_r]}$}

\TODO{insert proof of ``$\delta$ lemma?''}

\section{Proofs}


Expand Down Expand Up @@ -6884,28 +6894,6 @@ \subsection{Substitution}
then follow by a trivial induction.
\end{proof}

\TODO{immediate consequences of (label) weakening}

\TODO{text}

\begin{equation}
\dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}}
= \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}}
; \delta^{-1}
; [\pi_r, \rfix{\dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}, \ell(A)}}}]
\end{equation}

\TODO{in particular, if $\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}}$}

\begin{equation}
\dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{x}{s}}}{\ms{L}}}
= \lmor{\dnt{\haslb{\Gamma}{r}{\ms{L}, \ell(A)}}}
; \delta^{-1}
; [\pi_r, \dnt{\haslb{\Gamma, \bhyp{x}{A}}{s}{\ms{L}}}]
\end{equation}

\TODO{segue}

\begin{lemma}[Substitution Projection]
For $\issubst{\gamma}{\Gamma}{\Delta}$, $\ms{eff}(\Delta) = \bot$ and $\Delta(x) = A$, we have
\begin{equation}
Expand Down Expand Up @@ -8173,7 +8161,7 @@ \subsection{Equational Theory}
= \lmor{R} ; \delta^{-1} ;
[\ms{id}, \rfix{S ; [\ms{id}, \iota_r]}] \\
& = \lmor{R} ; \delta^{-1} ;
[\ms{id}, \rfix{\dnt{\haslb{\Gamma, \bhyp{y}{A}}{[\ell/\kappa]s}{\ms{L}}}}]
[\ms{id}, \rfix{\dnt{\haslb{\Gamma, \bhyp{y}{A}}{[\ell/\kappa]s}{\ms{L}, \ell(A)}}}]
= \dnt{\haslb{\Gamma}{\where{r}{\wbranch{\ell}{y}{[\ell/\kappa]s}}}{\ms{L}}}
\end{aligned}
\end{equation}
Expand Down

0 comments on commit 1bd4222

Please sign in to comment.