-
Notifications
You must be signed in to change notification settings - Fork 44
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Test] port flash attention from sglang #3011
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,333 @@ | ||
# Copyright 2023-2024 SGLang Team | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
""" | ||
Memory-efficient attention for prefill. | ||
It supports page size = 1 and prefill with KV cache (i.e. extend). | ||
""" | ||
|
||
import torch | ||
import triton | ||
import triton.language as tl | ||
|
||
is_cuda_available = torch.cuda.is_available() | ||
CUDA_CAPABILITY = "80" | ||
if is_cuda_available: | ||
CUDA_CAPABILITY = torch.cuda.get_device_capability() | ||
|
||
|
||
@triton.jit | ||
def tanh(x): | ||
# Tanh is just a scaled sigmoid | ||
return 2 * tl.sigmoid(2 * x) - 1 | ||
|
||
|
||
@triton.jit | ||
def _fwd_kernel( | ||
Q_Extend, | ||
K_Extend, | ||
V_Extend, | ||
O_Extend, | ||
K_Buffer, | ||
V_Buffer, | ||
Req_to_tokens, | ||
B_req_idx, | ||
B_Seq_Len, | ||
B_Start_Loc_Extend, | ||
B_Seq_Len_Extend, | ||
sm_scale, | ||
kv_group_num, | ||
stride_qbs, | ||
stride_qh, | ||
stride_kbs, | ||
stride_kh, | ||
stride_vbs, | ||
stride_vh, | ||
stride_obs, | ||
stride_oh, | ||
stride_buf_kbs, | ||
stride_buf_kh, | ||
stride_buf_vbs, | ||
stride_buf_vh, | ||
stride_req_to_tokens_b, | ||
logit_cap: tl.constexpr, | ||
Lq: tl.constexpr, | ||
Lv: tl.constexpr, | ||
BLOCK_DMODEL: tl.constexpr, | ||
BLOCK_DPE: tl.constexpr, | ||
BLOCK_DV: tl.constexpr, | ||
BLOCK_M: tl.constexpr, | ||
BLOCK_N: tl.constexpr, | ||
): | ||
cur_seq = tl.program_id(0) | ||
cur_head = tl.program_id(1) | ||
cur_block_m = tl.program_id(2) | ||
cur_kv_head = cur_head // kv_group_num | ||
|
||
cur_seq_len = tl.load(B_Seq_Len + cur_seq) | ||
cur_seq_len_extend = tl.load(B_Seq_Len_Extend + cur_seq) | ||
cur_seq_len_prefix = cur_seq_len - cur_seq_len_extend | ||
|
||
cur_seq_prefix_start_in_loc = 0 | ||
cur_seq_extend_start_contiguous = tl.load(B_Start_Loc_Extend + cur_seq) | ||
cur_batch_req_idx = tl.load(B_req_idx + cur_seq) | ||
|
||
offs_d = tl.arange(0, BLOCK_DMODEL) | ||
offs_dv = tl.arange(0, BLOCK_DV) | ||
offs_m = tl.arange(0, BLOCK_M) | ||
mask_m = (cur_block_m * BLOCK_M + offs_m) < cur_seq_len_extend | ||
|
||
mask_d = offs_d < Lq | ||
mask_dv = offs_dv < Lv | ||
|
||
offs_q = ((cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_qbs + | ||
cur_head * stride_qh + offs_d[None, :]) | ||
q = tl.load(Q_Extend + offs_q, mask=(mask_m[:, None]) & (mask_d[None, :]), other=0.0) | ||
|
||
if BLOCK_DPE > 0: | ||
offs_dpe = BLOCK_DMODEL + tl.arange(0, BLOCK_DPE) | ||
offs_qpe = ((cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_qbs + | ||
cur_head * stride_qh + offs_dpe[None, :]) | ||
qpe = tl.load(Q_Extend + offs_qpe, mask=mask_m[:, None], other=0.0) | ||
|
||
# stage 1: compute scores with prefix | ||
offs_n = tl.arange(0, BLOCK_N) | ||
|
||
acc = tl.zeros([BLOCK_M, BLOCK_DV], dtype=tl.float32) | ||
deno = tl.zeros([BLOCK_M], dtype=tl.float32) | ||
e_max = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") | ||
|
||
for start_n in range(0, cur_seq_len_prefix, BLOCK_N): | ||
start_n = tl.multiple_of(start_n, BLOCK_N) | ||
mask_n = (start_n + offs_n) < cur_seq_len_prefix | ||
offs_b_loc_prefix = cur_batch_req_idx * stride_req_to_tokens_b + (cur_seq_prefix_start_in_loc + start_n + | ||
offs_n) | ||
offs_kv_loc = tl.load(Req_to_tokens + offs_b_loc_prefix, mask=mask_n, other=0) | ||
|
||
# load k in transposed way | ||
offs_buf_k = (offs_kv_loc[None, :] * stride_buf_kbs + cur_kv_head * stride_buf_kh + offs_d[:, None]) | ||
k = tl.load(K_Buffer + offs_buf_k, mask=(mask_n[None, :]) & (mask_d[:, None]), other=0.0) | ||
|
||
qk = tl.dot(q.to(k.dtype), k) | ||
if BLOCK_DPE > 0: | ||
offs_kpe = (offs_kv_loc[None, :] * stride_buf_kbs + cur_kv_head * stride_buf_kh + offs_dpe[:, None]) | ||
kpe = tl.load( | ||
K_Buffer + offs_kpe, | ||
mask=mask_n[None, :], | ||
other=0.0, | ||
) | ||
qk += tl.dot(qpe.to(kpe.dtype), kpe) | ||
qk *= sm_scale | ||
|
||
if logit_cap > 0: | ||
qk = logit_cap * tanh(qk / logit_cap) | ||
|
||
qk = tl.where(mask_m[:, None] & mask_n[None, :], qk, float("-inf")) | ||
|
||
n_e_max = tl.maximum(tl.max(qk, 1), e_max) | ||
re_scale = tl.exp(e_max - n_e_max) | ||
p = tl.exp(qk - n_e_max[:, None]) | ||
deno = deno * re_scale + tl.sum(p, 1) | ||
|
||
offs_buf_v = (offs_kv_loc[:, None] * stride_buf_vbs + cur_kv_head * stride_buf_vh + offs_dv[None, :]) | ||
v = tl.load(V_Buffer + offs_buf_v, mask=mask_n[:, None] & mask_dv[None, :], other=0.0) | ||
p = p.to(v.dtype) | ||
acc = acc * re_scale[:, None] + tl.dot(p, v) | ||
|
||
e_max = n_e_max | ||
|
||
# stage 2: compute the trianlge part | ||
|
||
cur_block_m_end = tl.minimum(cur_seq_len_extend, (cur_block_m + 1) * BLOCK_M) | ||
for start_n in range(0, cur_block_m_end, BLOCK_N): | ||
start_n = tl.multiple_of(start_n, BLOCK_N) | ||
mask_n = (start_n + offs_n) < cur_block_m_end | ||
|
||
# load k in transposed way | ||
offs_k = ((cur_seq_extend_start_contiguous + start_n + offs_n[None, :]) * stride_kbs + cur_kv_head * stride_kh + | ||
offs_d[:, None]) | ||
k = tl.load(K_Extend + offs_k, mask=(mask_n[None, :]) & (mask_d[:, None]), other=0.0) | ||
|
||
qk = tl.dot(q, k, out_dtype=tl.float32) | ||
if BLOCK_DPE > 0: | ||
offs_kpe = ((cur_seq_extend_start_contiguous + start_n + offs_n[None, :]) * stride_kbs + | ||
cur_kv_head * stride_kh + offs_dpe[:, None]) | ||
kpe = tl.load( | ||
K_Extend + offs_kpe, | ||
mask=mask_n[None, :], | ||
other=0.0, | ||
) | ||
qk += tl.dot(qpe, kpe) | ||
|
||
qk *= sm_scale | ||
|
||
if logit_cap > 0: | ||
qk = logit_cap * tanh(qk / logit_cap) | ||
|
||
mask_causual = (cur_block_m * BLOCK_M + offs_m[:, None]) >= (start_n + offs_n[None, :]) | ||
mask_causual &= mask_m[:, None] & mask_n[None, :] | ||
qk = tl.where(mask_causual, qk, float("-inf")) | ||
|
||
n_e_max = tl.maximum(tl.max(qk, 1), e_max) | ||
re_scale = tl.exp(e_max - n_e_max) | ||
p = tl.exp(qk - n_e_max[:, None]) | ||
deno = deno * re_scale + tl.sum(p, 1) | ||
|
||
offs_v = ((cur_seq_extend_start_contiguous + start_n + offs_n[:, None]) * stride_vbs + cur_kv_head * stride_vh + | ||
offs_dv[None, :]) | ||
v = tl.load(V_Extend + offs_v, mask=mask_n[:, None] & mask_dv[None, :], other=0.0) | ||
p = p.to(v.dtype) | ||
acc = acc * re_scale[:, None] + tl.dot(p, v) | ||
|
||
e_max = n_e_max | ||
|
||
offs_o = ((cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_obs + | ||
cur_head * stride_oh + offs_dv[None, :]) | ||
tl.store(O_Extend + offs_o, acc / deno[:, None], mask=mask_m[:, None] & mask_dv[None, :]) | ||
|
||
|
||
def extend_attention_fwd( | ||
q_extend, | ||
k_extend, | ||
v_extend, | ||
o_extend, | ||
k_buffer, | ||
v_buffer, | ||
req_to_tokens, | ||
b_req_idx, | ||
b_seq_len, | ||
b_seq_len_extend, | ||
b_start_loc_extend, | ||
max_len_extend, | ||
sm_scale=None, | ||
logit_cap=0.0, | ||
): | ||
""" | ||
q_extend, k_extend, v_extend, o_extend: contiguous tensors | ||
|
||
k_buffer, v_buffer: (prefix + extend) tensors in mem_manager | ||
""" | ||
Lq, Lk, Lv = ( | ||
q_extend.shape[-1], | ||
k_extend.shape[-1], | ||
v_extend.shape[-1], | ||
) | ||
|
||
if Lq == 576: | ||
BLOCK_DMODEL = 512 | ||
BLOCK_DPE = 64 | ||
elif Lq == 288: | ||
BLOCK_DMODEL = 256 | ||
BLOCK_DPE = 32 | ||
elif Lq == 192: | ||
BLOCK_DMODEL = 128 | ||
BLOCK_DPE = 64 | ||
else: | ||
BLOCK_DMODEL = triton.next_power_of_2(Lq) | ||
BLOCK_DPE = 0 | ||
BLOCK_DV = triton.next_power_of_2(Lv) | ||
|
||
if is_cuda_available and CUDA_CAPABILITY[0] >= 9: | ||
if Lq <= 256: | ||
BLOCK_M, BLOCK_N = (128, 64) | ||
else: | ||
BLOCK_M, BLOCK_N = (32, 64) | ||
elif is_cuda_available and CUDA_CAPABILITY[0] >= 8: | ||
if Lq <= 128: | ||
BLOCK_M, BLOCK_N = (128, 128) | ||
elif Lq <= 256: | ||
BLOCK_M, BLOCK_N = (64, 64) | ||
else: | ||
BLOCK_M, BLOCK_N = (32, 64) | ||
else: | ||
BLOCK_M, BLOCK_N = (64, 64) if Lq <= 128 else (32, 32) | ||
|
||
sm_scale = sm_scale or 1.0 / (Lq**0.5) | ||
batch_size, head_num = b_seq_len.shape[0], q_extend.shape[1] | ||
kv_group_num = q_extend.shape[1] // k_extend.shape[1] | ||
|
||
grid = (batch_size, head_num, triton.cdiv(max_len_extend, BLOCK_M)) | ||
num_warps = 4 if Lk <= 64 else 8 | ||
num_stages = 1 | ||
|
||
_fwd_kernel[grid]( | ||
q_extend, | ||
k_extend, | ||
v_extend, | ||
o_extend, | ||
k_buffer, | ||
v_buffer, | ||
req_to_tokens, | ||
b_req_idx, | ||
b_seq_len, | ||
b_start_loc_extend, | ||
b_seq_len_extend, | ||
sm_scale, | ||
kv_group_num, | ||
q_extend.stride(0), | ||
q_extend.stride(1), | ||
k_extend.stride(0), | ||
k_extend.stride(1), | ||
v_extend.stride(0), | ||
v_extend.stride(1), | ||
o_extend.stride(0), | ||
o_extend.stride(1), | ||
k_buffer.stride(0), | ||
k_buffer.stride(1), | ||
v_buffer.stride(0), | ||
v_buffer.stride(1), | ||
req_to_tokens.stride(0), | ||
logit_cap=logit_cap, | ||
BLOCK_DMODEL=BLOCK_DMODEL, | ||
BLOCK_DPE=BLOCK_DPE, | ||
BLOCK_DV=BLOCK_DV, | ||
BLOCK_M=BLOCK_M, | ||
BLOCK_N=BLOCK_N, | ||
Lq=Lq, | ||
Lv=Lv, | ||
num_warps=num_warps, | ||
num_stages=num_stages, | ||
) | ||
|
||
|
||
# host test | ||
def main(): | ||
seq_len = 1024 | ||
batch_size = 1 | ||
head_num = 32 | ||
Lq = 128 | ||
Lv = 128 | ||
max_len_extend = 1024 | ||
device = "xpu" | ||
q_test = torch.randn(batch_size * seq_len, head_num, Lq).to(device) | ||
k_test = torch.randn(batch_size * seq_len, head_num, Lv).to(device) | ||
v_test = torch.randn(batch_size * seq_len, head_num, Lv).to(device) | ||
o_tensor_ptr = torch.randn(batch_size * seq_len, head_num, Lq).to(device) | ||
k_buffer_test = torch.randn(batch_size * seq_len).to(device) | ||
v_buffer_test = torch.randn(batch_size * seq_len).to(device) | ||
req_to_tokens_test = torch.randint(0, max_len_extend, (batch_size * seq_len, head_num), | ||
dtype=torch.int32).to(device) | ||
b_req_idx_test = torch.arange(0, batch_size, dtype=torch.int32).to(device) | ||
b_seq_len_test = torch.ones(batch_size, dtype=torch.int32) * seq_len | ||
b_seq_len_test = b_seq_len_test.to(device) | ||
b_seq_len_extend_test = torch.ones(batch_size, dtype=torch.int32) * seq_len | ||
b_seq_len_extend_test = b_seq_len_extend_test.to(device) | ||
b_start_loc_extend_test = torch.arange(0, batch_size, dtype=torch.int32) * seq_len | ||
b_start_loc_extend_test = b_start_loc_extend_test.to(device) | ||
extend_attention_fwd(q_test, k_test, v_test, o_tensor_ptr, k_buffer_test, v_buffer_test, req_to_tokens_test, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What are the differences between this implementation of flash attention and https://github.com/intel/intel-xpu-backend-for-triton/blob/main/benchmarks/triton_kernels_benchmark/flash_attention_fwd_benchmark.py? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. seems many condition control, but the main difference is not using block pointer. |
||
b_req_idx_test, b_seq_len_test, b_seq_len_extend_test, b_start_loc_extend_test, 1024, | ||
sm_scale=1.0 / (Lq**0.5)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can we add timing mechanism and result checking to ensure functional correctness?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't know how to compare the result...
it's originated from end2end test