Skip to content

Commit

Permalink
remove 'kernel_name'
Browse files Browse the repository at this point in the history
Signed-off-by: Anatoly Myachev <[email protected]>
  • Loading branch information
anmyachev committed Oct 21, 2024
1 parent 0b90c7e commit 0d5f3fc
Show file tree
Hide file tree
Showing 10 changed files with 17 additions and 68 deletions.
6 changes: 3 additions & 3 deletions benchmarks/triton_kernels_benchmark/benchmark_testing.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def _summarize_statistics(times, quantiles, return_mode):


def do_bench_ipex(fn, n_warmup=25, n_repeat=100, grad_to_none=None, quantiles=None, return_mode="mean", device="xpu",
sync_submitting=True, kernel_name=None): # pylint: disable=unused-argument
sync_submitting=True):
"""
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
the 20-th and 80-th performance percentile.
Expand Down Expand Up @@ -108,7 +108,7 @@ def extract_kernels(funcs):


def do_bench_elapsed_time(fn, n_warmup=25, n_repeat=100, grad_to_none=None, quantiles=None, return_mode="mean",
device="xpu", kernel_name=None): # pylint: disable=unused-argument
device="xpu"):
"""
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
the 20-th and 80-th performance percentile.
Expand Down Expand Up @@ -160,7 +160,7 @@ def do_bench_elapsed_time(fn, n_warmup=25, n_repeat=100, grad_to_none=None, quan


def do_bench_upstream_pytorch_profiler(fn, n_warmup=25, n_repeat=100, grad_to_none=None, quantiles=None,
return_mode="mean", device="xpu", sync_submitting=True, kernel_name=None): # pylint: disable=unused-argument
return_mode="mean", device="xpu", sync_submitting=True):
"""
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
the 20-th and 80-th performance percentile.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -256,8 +256,7 @@ def benchmark(Z, H, N_CTX, D_HEAD, CAUSAL, provider):
), attn_mask=None, dropout_p=0.0, is_causal=CAUSAL, scale=sm_scale).to(torch.float32)
atol = 1e-1 if N_CTX == 16384 else 1e-2
benchmark_suit.assert_close(triton_fn(), torch_fn(), atol=atol, rtol=1e-3, err_msg='triton to torch')
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10, quantiles=quantiles,
kernel_name='_attn_fwd')
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10, quantiles=quantiles)

elif provider == 'xetla':
module_name = f'flash_attn_causal_{CAUSAL}'.lower()
Expand All @@ -272,8 +271,7 @@ def benchmark(Z, H, N_CTX, D_HEAD, CAUSAL, provider):
l = torch.empty((size_ml, ), device='xpu', dtype=torch.float)

xetla_fn = lambda: func(q, k, v, out, dropout_mask, bias, m, l, Z, H, D_HEAD, N_CTX, N_CTX, sm_scale)
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(xetla_fn, n_warmup=10, n_repeat=10, quantiles=quantiles,
kernel_name='gpu::xetla::fmha::FmhaForwardKernel<')
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(xetla_fn, n_warmup=10, n_repeat=10, quantiles=quantiles)

else:
raise NotImplementedError(f'Unsupported provider {provider}')
Expand Down
15 changes: 2 additions & 13 deletions benchmarks/triton_kernels_benchmark/fused_softmax.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,8 +131,7 @@ def benchmark(M, N, provider):
triton_fn = lambda: softmax(x, out)
torch_fn = lambda: torch.softmax(x, axis=-1)
benchmark_suit.assert_close(triton_fn(), torch_fn(), err_msg="triton to torch")
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(triton_fn, quantiles=quantiles, n_warmup=10, n_repeat=10,
kernel_name="softmax_kernel")
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(triton_fn, quantiles=quantiles, n_warmup=10, n_repeat=10)

elif provider == "torch-jit":
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(lambda: naive_softmax(x), quantiles=quantiles,
Expand All @@ -145,17 +144,7 @@ def benchmark(M, N, provider):
xetla_fn = lambda: func(x, out, 0)
torch_fn = lambda: torch.softmax(x, axis=-1)
# benchmark_suit.assert_close(xetla_fn(), torch_fn(), err_msg="xetla to torch")
kernels_name = {
"softmax_shape_4096_256": "mat1_4096x256_bf16_cfg0",
"softmax_shape_4096_1024": "mat1_4096x1024_bf16_cfg0",
"softmax_shape_4096_2048": "mat1_4096x2048_bf16_cfg0",
"softmax_shape_4096_4096": "mat1_4096x4096_bf16_cfg0",
"softmax_shape_4096_8192": "mat1_4096x8k_bf16_cfg0",
"softmax_shape_4096_16384": "mat1_4096x16k_bf16_cfg0",
"softmax_shape_4096_32768": "mat1_4096x32k_bf16_cfg0",
}
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(xetla_fn, quantiles=quantiles, n_warmup=10, n_repeat=10,
kernel_name=kernels_name[name])
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(xetla_fn, quantiles=quantiles, n_warmup=10, n_repeat=10)

else:
raise NotImplementedError(f"Unsupported provider {provider}")
Expand Down
35 changes: 3 additions & 32 deletions benchmarks/triton_kernels_benchmark/gemm_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -284,7 +284,7 @@ def benchmark(B, M, N, K, provider):
# Legacy profiler shows ~6000TFLOPS GeoMean for onednn measurements, so use more reliable method
do_bench = do_bench_elapsed_time
_, min_ms, max_ms, mean_ms, cv = do_bench(lambda: torch.matmul(torch_a, torch_b), n_warmup=10, n_repeat=10,
quantiles=quantiles, kernel_name='gemm_kernel')
quantiles=quantiles)
elif provider == 'triton':
assert len(a.shape) == len(b.shape), 'Incompatible sizes'
if len(a.shape) == 3:
Expand All @@ -297,8 +297,7 @@ def benchmark(B, M, N, K, provider):
rtol = 1e-2 if a.dtype == torch.bfloat16 else 1e-3
benchmark_suit.assert_close(triton_fn(), torch_fn(), atol=1e-4, rtol=rtol, err_msg='triton to torch')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10,
quantiles=quantiles,
kernel_name='matmul_kernel_with_block_pointers')
quantiles=quantiles)
elif provider == 'xetla':
if B == 1:
c = torch.empty((M, N), device='xpu', dtype=torch.float32)
Expand All @@ -317,37 +316,9 @@ def benchmark(B, M, N, K, provider):
xetla_fn = lambda: func(a, b, c, acc, cnt)
torch_fn = lambda: torch.matmul(a, b).to(torch.float32)

kernels_name = {
'gemm_shape_1_1024_1024_1024': 'Test_1x1024x1024x1024_row_row',
'gemm_shape_1_2048_2048_2048': 'Test_1x2048x2048x2048_row_row',
'gemm_shape_1_4096_4096_4096': 'Test_1x4096x4096x4096_row_row',
'gemm_shape_1_8192_8192_8192': 'Test_1x8192x8192x8192_row_row',
'gemm_shape_1_1_5120_13824': 'Test_1x1x5120x13824_row_row',
'gemm_shape_1_4_4096_12288': 'Test_1x4x4096x12288_row_row',
'gemm_shape_1_512_8192_8192': 'Test_1x512x8192x8192_row_row',
'gemm_shape_1_512_8192_32768': 'Test_1x512x8192x32768_row_row',
'gemm_shape_1_512_32768_8192': 'Test_1x512x32768x8192_row_row',
'gemm_shape_1_1024_16384_8192': 'Test_1x1024x16384x8192_row_row',
'gemm_shape_1_1024_28672_8192': 'Test_1x1024x28672x8192_row_row',
'gemm_shape_1_3072_4096_3072': 'Test_1x3072x4096x3072_row_row',
'gemm_shape_1_4096_16384_8192': 'Test_1x4096x16384x8192_row_row',
'gemm_shape_1_8192_16384_1024': 'Test_1x8192x16384x1024_row_row',
'gemm_shape_1_8192_16384_4096': 'Test_1x8192x16384x4096_row_row',
'gemm_shape_1_16384_1024_8192': 'Test_1x16384x1024x8192_row_row',
'gemm_shape_1_16384_4096_8192': 'Test_1x16384x4096x8192_row_row',
'gemm_shape_1_16384_8192_1024': 'Test_1x16384x8192x1024_row_row',
'gemm_shape_1_16384_8192_4096': 'Test_1x16384x8192x4096_row_row',
'gemm_shape_4_32768_128_4096': 'Test_4x32768x128x4096_row_row',
'gemm_shape_4_32768_4096_128': 'Test_4x32768x4096x128_row_row',
'gemm_shape_32_4096_4096_128': 'Test_32x4096x4096x128_row_row',
'gemm_shape_4096_8_128_16384': 'Test_4096x8x128x16384_row_row',
'gemm_shape_4096_8_16384_128': 'Test_4096x8x16384x128_row_row',
'gemm_streamk_shape_3072_4096_3072': 'stream_k_gemm_run',
}

# benchmark_suit.assert_close(xetla_fn(), torch_fn(), atol=1e-4, rtol=1.0, err_msg='xetla to torch')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(xetla_fn, n_warmup=10, n_repeat=10,
quantiles=quantiles, kernel_name=kernels_name[name])
quantiles=quantiles)
else:
raise NotImplementedError(f'Unsupported provider {provider}')

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -266,17 +266,15 @@ def benchmark(B, M, N, K, provider):
assert len(a.shape) == len(b.shape), 'Incompatible sizes'
if len(a.shape) == 3:
c = torch.empty((B, M, N), device='xpu', dtype=torch.float32)
kernel_name = 'matmul_kernel_with_block_pointers_batched'
else:
assert len(a.shape) == 2, 'Expecting shape of length 2'
c = torch.empty((M, N), device='xpu', dtype=torch.float32)
kernel_name = 'matmul_kernel_with_block_pointers'
triton_fn = lambda: matmul(a, b, d, c)
torch_fn = lambda: torch.matmul(a, b).to(torch.float32) + d
rtol = 1e-2 if a.dtype == torch.bfloat16 else 1e-3
benchmark_suit.assert_close(triton_fn(), torch_fn(), atol=1e-4, rtol=rtol, err_msg='triton to torch')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10,
quantiles=quantiles, kernel_name=kernel_name)
quantiles=quantiles)
else:
raise NotImplementedError(f'Unsupported provider {provider}')

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -268,17 +268,15 @@ def benchmark(B, M, N, K, provider):
assert len(a.shape) == len(b.shape), 'Incompatible sizes'
if len(a.shape) == 3:
c = torch.empty((B, M, N), device='xpu', dtype=torch.float32)
kernel_name = 'matmul_kernel_with_block_pointers_batched'
else:
assert len(a.shape) == 2, 'Expecting shape of length 2'
c = torch.empty((M, N), device='xpu', dtype=torch.float32)
kernel_name = 'matmul_kernel_with_block_pointers'
triton_fn = lambda: matmul(a, b, c)
torch_fn = lambda: torch.nn.functional.gelu(torch.matmul(a, b).to(torch.float32))
rtol = 1e-2 if a.dtype == torch.bfloat16 else 1e-3
benchmark_suit.assert_close(triton_fn(), torch_fn(), atol=1e-4, rtol=rtol, err_msg='triton to torch')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10,
quantiles=quantiles, kernel_name=kernel_name)
quantiles=quantiles)
else:
raise NotImplementedError(f'Unsupported provider {provider}')

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -256,17 +256,15 @@ def benchmark(B, M, N, K, provider):
assert len(a.shape) == len(b.shape), 'Incompatible sizes'
if len(a.shape) == 3:
c = torch.empty((B, M, N), device='xpu', dtype=torch.float32)
kernel_name = 'matmul_kernel_with_block_pointers_batched'
else:
assert len(a.shape) == 2, 'Expecting shape of length 2'
c = torch.empty((M, N), device='xpu', dtype=torch.float32)
kernel_name = 'matmul_kernel_with_block_pointers'
triton_fn = lambda: matmul(a, b, c)
torch_fn = lambda: torch.matmul(torch.exp(a), b).to(torch.float32)
rtol = 1e-2 if a.dtype == torch.bfloat16 else 1e-3
benchmark_suit.assert_close(triton_fn(), torch_fn(), atol=1e-4, rtol=rtol, err_msg='triton to torch')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10,
quantiles=quantiles, kernel_name=kernel_name)
quantiles=quantiles)
else:
raise NotImplementedError(f'Unsupported provider {provider}')

Expand Down
3 changes: 1 addition & 2 deletions benchmarks/triton_kernels_benchmark/gemm_splitk_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,8 +156,7 @@ def benchmark(M, N, K, provider):
torch_fn = lambda: torch.matmul(a, b).to(torch.float32)
rtol = 1e-2 if a.dtype == torch.bfloat16 else 1e-3
benchmark_suit.assert_close(triton_fn(), torch_fn(), atol=1e-4, rtol=rtol, err_msg='triton to torch')
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10, quantiles=quantiles,
kernel_name='_kernel')
_, min_ms, max_ms, mean, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10, quantiles=quantiles)
else:
raise NotImplementedError(f'Unsupported provider {provider}')

Expand Down
5 changes: 2 additions & 3 deletions benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,8 +280,7 @@ def benchmark(M, N, K, provider):
torch_fn = lambda: torch.matmul(a, b).to(torch.float32)
benchmark_suit.assert_close(triton_fn(), torch_fn(), atol=1e-4, rtol=1e-2, err_msg='triton to torch')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(triton_fn, n_warmup=10, n_repeat=10,
quantiles=quantiles,
kernel_name=['first_wave', 'full_tiles'])
quantiles=quantiles)
elif provider == 'xetla':
c = torch.empty((M, N), device='xpu', dtype=torch.float32)
acc = torch.empty((M, N), device='xpu', dtype=torch.float32)
Expand All @@ -294,7 +293,7 @@ def benchmark(M, N, K, provider):

# benchmark_suit.assert_close(xetla_fn(), torch_fn(), atol=1e-4, rtol=1.0, err_msg='xetla to torch')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(xetla_fn, n_warmup=10, n_repeat=10,
quantiles=quantiles, kernel_name='stream_k_gemm_run')
quantiles=quantiles)
else:
raise NotImplementedError(f'Unsupported provider {provider}')

Expand Down
3 changes: 1 addition & 2 deletions benchmarks/triton_kernels_benchmark/prefix_sums.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,7 @@ def benchmark(M, N, AXIS, provider):

if provider == 'triton':
triton_fn = lambda: scan_kernel[(1, )](x, BLOCK_SIZE_M=M, BLOCK_SIZE_N=N, AXIS=AXIS)
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(triton_fn, quantiles=quantiles,
kernel_name='scan_kernel')
_, min_ms, max_ms, mean_ms, cv = benchmark_suit.do_bench(triton_fn, quantiles=quantiles)
else:
raise NotImplementedError(f'Unsupported provider {provider}')

Expand Down

0 comments on commit 0d5f3fc

Please sign in to comment.