Skip to content

No-basekit build and test #177

No-basekit build and test

No-basekit build and test #177

name: No-basekit build and test
on:
workflow_dispatch:
schedule:
- cron: "5 2 * * *"
permissions: read-all
env:
TRITON_DISABLE_LINE_INFO: 1
jobs:
integration-tests:
name: Integration tests
runs-on:
- max1100
- rolling
- runner-0.0.20
strategy:
matrix:
python: ${{ github.ref_name == 'main' && fromJson('["3.9", "3.10", "3.11"]') || fromJson('["3.9"]') }}
defaults:
run:
shell: bash -noprofile --norc -eo pipefail -c "source {0}"
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Calculate PATH
run: |
echo $HOME/miniforge3/bin >>$GITHUB_PATH
- name: Load conda cache
id: conda-cache
uses: ./.github/actions/load
env:
CACHE_NUMBER: 6
with:
path: $HOME/miniforge3/envs/triton
key: no-basekit-py${{ matrix.python }}-${{ hashFiles('scripts/triton.yml', 'python/pyproject.toml', 'python/setup.py', '.github/pins/ipex.txt', '.github/pins/pytorch.txt') }}-${{ env.CACHE_NUMBER }}
- name: Update conda env
if: ${{ steps.conda-cache.outputs.status == 'miss' }}
run: |
conda create -n triton --override-channels -c conda-forge python=${{ matrix.python }}.*
conda env update -f scripts/triton.yml
ln -snf /usr/include/level_zero $HOME/miniforge3/envs/triton/x86_64-conda-linux-gnu/sysroot/usr/include/level_zero
find /usr -name libze_\* -exec ln -sf {} $HOME/miniforge3/envs/triton/lib/ \;
find /opt/intel/oneapi/mkl/2025.0/lib/ \( -name '*.so' -or -name '*.so.*' \) -exec cp -n {} $HOME/miniforge3/envs/triton/lib \;
find /opt/intel/oneapi/compiler/2024.1/lib/ \( -name '*.so' -or -name '*.so.*' \) -exec cp -n {} $HOME/miniforge3/envs/triton/lib \;
- name: Calculate ENV
run: |
python -m venv ./.venv; source ./.venv/bin/activate
echo LD_LIBRARY_PATH=$HOME/miniforge3/envs/triton/lib:$LD_LIBRARY_PATH:$VIRTUAL_ENV/lib >>$GITHUB_ENV
echo CPATH=$CPATH:$VIRTUAL_ENV/include:$VIRTUAL_ENV/include/sycl >>$GITHUB_ENV
- name: Install deps
run: |
python -m venv ./.venv; source ./.venv/bin/activate
wget https://files.pythonhosted.org/packages/cc/1e/d74e608f0c040e4f72dbfcd3b183f39570f054d08de39cc431f153220d90/intel_sycl_rt-2024.1.2-py2.py3-none-manylinux1_x86_64.whl
wheel unpack intel_sycl_rt-2024.1.2-py2.py3-none-manylinux1_x86_64.whl
mkdir -p ./intel_sycl_rt-2024.1.2/intel_sycl_rt-2024.1.2.data/data/include
cp -r /opt/intel/oneapi/compiler/2024.1/include/sycl ./intel_sycl_rt-2024.*/intel_sycl_rt-2024.*.data/data/include/
wheel pack intel_sycl_rt-2024.1.2 --build headers_patch
mv intel_sycl_rt-2024.1.2-headers_patch-py2.py3-none-manylinux1_x86_64.whl intel_sycl_rt-2024.1.2-py2.py3-none-manylinux1_x86_64.whl
pip install --force-reinstall ./intel_sycl_rt-2024.1.2-py2.py3-none-manylinux1_x86_64.whl
pip install dpcpp_cpp_rt==2024.1.2
- name: Add conda info to log
run: |
conda info
conda list -n triton
- name: Install latest nightly wheels
uses: ./.github/actions/install-wheels
with:
gh_token: ${{ secrets.GITHUB_TOKEN }}
install_cmd: conda run --no-capture-output -n triton pip install
python_version: ${{ matrix.python }}
wheels_pattern: 'torch-*'
- name: Build Triton
run: |
set -x
python -m venv ./.venv; source ./.venv/bin/activate
export DEBUG=1
cd python
conda run --no-capture-output -n triton pip install pybind11
conda run --no-capture-output -n triton pip install --no-build-isolation -e '.[build,tests,tutorials]'
- name: Run tests
run: |
set -x
python -m venv ./.venv; source ./.venv/bin/activate
export TRITON_TEST_REPORTS=true
export TRITON_TEST_REPORTS_DIR=$HOME/reports
# FIXME https://github.com/intel/intel-xpu-backend-for-triton/issues/866
export TRITON_TEST_SKIPLIST_DIR=scripts/skiplist/no-basekit
conda run --no-capture-output -n triton bash -v -x scripts/test-triton.sh
- name: Run E2E test
run: |
# FIXME https://github.com/intel/intel-xpu-backend-for-triton/issues/1031
cd ../pytorch || {
PYTORCH_COMMIT_ID=$(<.github/pins/pytorch.txt)
cd ..
git clone --single-branch -b dev/triton-test-3.0 --recurse-submodules https://github.com/Stonepia/pytorch.git
cd pytorch
git branch pin-branch $PYTORCH_COMMIT_ID
git switch pin-branch
}
TRANSFORMERS_VERSION="$(<.ci/docker/ci_commit_pins/huggingface.txt)"
conda run -n triton pip install pyyaml pandas scipy numpy psutil pyre_extensions torchrec transformers==$TRANSFORMERS_VERSION
# Set WORKSPACE for inductor_xpu_test.sh to make sure it creates "inductor_log" outside of pytorch cloned directory
export WORKSPACE=$GITHUB_WORKSPACE
# TODO: Find the fastest Hugging Face model
conda run --no-capture-output -n triton $GITHUB_WORKSPACE/scripts/inductor_xpu_test.sh huggingface float32 inference accuracy xpu 0 static 1 0 AlbertForMaskedLM
# The script above always returns 0, so we need an additional check to see if the accuracy test passed
cat $WORKSPACE/inductor_log/*/*/*.csv
grep AlbertForMaskedLM $WORKSPACE/inductor_log/*/*/*.csv | grep -q ,pass,
- name: Save conda cache
if: ${{ steps.conda-cache.outputs.status == 'miss' }}
uses: ./.github/actions/save
with:
path: ${{ steps.conda-cache.outputs.path }}
dest: ${{ steps.conda-cache.outputs.dest }}