Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

move LLC under L2 and add pivoted csv's for cpu and socket runmodes #62

Merged
merged 1 commit into from
Nov 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion _version.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.3.10
1.3.11
72 changes: 36 additions & 36 deletions events/metric_icx.json
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,42 @@
"expression": "[L2_RQSTS.CODE_RD_MISS] / [instructions]",
"expression-txn": "[L2_RQSTS.CODE_RD_MISS] / [TXN]"
},
{
"name": "metric_LLC code read MPI (demand+prefetch)",
"name-txn": "metric_LLC code read (demand+prefetch) misses per txn",
"expression": "([UNC_CHA_TOR_INSERTS.IA_MISS_CRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_CRD_PREF]) / [instructions]",
"expression-txn": "([UNC_CHA_TOR_INSERTS.IA_MISS_CRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_CRD_PREF]) / [TXN]"
},
{
"name": "metric_LLC data read MPI (demand+prefetch)",
"name-txn": "metric_LLC data read (demand+prefetch) misses per txn",
"expression": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [instructions]",
"expression-txn": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [TXN]"
},
{
"name": "metric_LLC total HITM (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HITM per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [TXN]"
},
{
"name": "metric_LLC total HIT clean line forwards (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HIT clean line forwards per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [TXN]"
},
{
"name": "metric_Average LLC demand data read miss latency (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for LOCAL requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_LOCAL] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_LOCAL]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for REMOTE requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_REMOTE] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_REMOTE]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_UPI Data transmit BW (MB/sec) (only data)",
"expression": "([UNC_UPI_TxL_FLITS.ALL_DATA] * (64 / 9.0) / 1000000) / 1"
Expand Down Expand Up @@ -138,42 +174,6 @@
"name": "metric_memory bandwidth total (MB/sec)",
"expression": "(([UNC_M_CAS_COUNT.RD] + [UNC_M_CAS_COUNT.WR]) * 64 / 1000000) / 1"
},
{
"name": "metric_LLC code read MPI (demand+prefetch)",
"name-txn": "metric_LLC code read (demand+prefetch) misses per txn",
"expression": "([UNC_CHA_TOR_INSERTS.IA_MISS_CRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_CRD_PREF]) / [instructions]",
"expression-txn": "([UNC_CHA_TOR_INSERTS.IA_MISS_CRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_CRD_PREF]) / [TXN]"
},
{
"name": "metric_LLC data read MPI (demand+prefetch)",
"name-txn": "metric_LLC data read (demand+prefetch) misses per txn",
"expression": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [instructions]",
"expression-txn": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [TXN]"
},
{
"name": "metric_LLC total HITM (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HITM per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [TXN]"
},
{
"name": "metric_LLC total HIT clean line forwards (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HIT clean line forwards per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [TXN]"
},
{
"name": "metric_Average LLC demand data read miss latency (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for LOCAL requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_LOCAL] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_LOCAL]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for REMOTE requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_REMOTE] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_REMOTE]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_ITLB (2nd level) MPI",
"name-txn": "metric_ITLB (2nd level) misses per txn",
Expand Down
76 changes: 38 additions & 38 deletions events/metric_spr_emr.json
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,44 @@
"expression": "[L2_RQSTS.CODE_RD_MISS] / [instructions]",
"expression-txn": "[L2_RQSTS.CODE_RD_MISS] / [TXN]"
},
{
"name": "metric_LLC code read MPI (demand+prefetch)",
"name-txn": "metric_LLC code read (demand+prefetch) misses per txn",
"expression": "[UNC_CHA_TOR_INSERTS.IA_MISS_CRD] / [instructions]",
"expression-txn": "[UNC_CHA_TOR_INSERTS.IA_MISS_CRD] / [TXN]"
},
{
"name": "metric_LLC data read MPI (demand+prefetch)",
"name-txn": "metric_LLC data read (demand+prefetch) misses per txn",
"expression": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDATA] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [instructions]",
"expression-txn": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDATA] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [TXN]"
},
{
"name": "metric_LLC total HITM (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HITM per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [TXN]",
"origin": "perfspect"
},
{
"name": "metric_LLC total HIT clean line forwards (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HIT clean line forwards per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [TXN]",
"origin": "perfspect"
},
{
"name": "metric_Average LLC demand data read miss latency (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for LOCAL requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_LOCAL] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_LOCAL]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for REMOTE requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_REMOTE] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_REMOTE]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_UPI Data transmit BW (MB/sec) (only data)",
"expression": "([UNC_UPI_TxL_FLITS.ALL_DATA] * (64 / 9.0) / 1000000) / 1"
Expand Down Expand Up @@ -140,44 +178,6 @@
"name": "metric_memory bandwidth total (MB/sec)",
"expression": "(([UNC_M_CAS_COUNT.RD] + [UNC_M_CAS_COUNT.WR]) * 64 / 1000000) / 1"
},
{
"name": "metric_LLC code read MPI (demand+prefetch)",
"name-txn": "metric_LLC code read (demand+prefetch) misses per txn",
"expression": "[UNC_CHA_TOR_INSERTS.IA_MISS_CRD] / [instructions]",
"expression-txn": "[UNC_CHA_TOR_INSERTS.IA_MISS_CRD] / [TXN]"
},
{
"name": "metric_LLC data read MPI (demand+prefetch)",
"name-txn": "metric_LLC data read (demand+prefetch) misses per txn",
"expression": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDATA] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [instructions]",
"expression-txn": "([UNC_CHA_TOR_INSERTS.IA_MISS_LLCPREFDATA] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD] + [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_PREF]) / [TXN]"
},
{
"name": "metric_LLC total HITM (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HITM per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HITM] / [TXN]",
"origin": "perfspect"
},
{
"name": "metric_LLC total HIT clean line forwards (per instr) (excludes LLC prefetches)",
"name-txn": "metric_LLC total HIT clean line forwards per txn (excludes LLC prefetches)",
"expression": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [instructions]",
"expression-txn": "[OCR.READS_TO_CORE.REMOTE_CACHE.SNOOP_HIT_WITH_FWD] / [TXN]",
"origin": "perfspect"
},
{
"name": "metric_Average LLC demand data read miss latency (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for LOCAL requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_LOCAL] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_LOCAL]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_Average LLC demand data read miss latency for REMOTE requests (in ns)",
"expression": "( 1000000000 * ([UNC_CHA_TOR_OCCUPANCY.IA_MISS_DRD_REMOTE] / [UNC_CHA_TOR_INSERTS.IA_MISS_DRD_REMOTE]) / ([UNC_CHA_CLOCKTICKS] / ([CHAS_PER_SOCKET] * [SOCKET_COUNT]) ) ) * 1"
},
{
"name": "metric_ITLB (2nd level) MPI",
"name-txn": "metric_ITLB (2nd level) misses per txn",
Expand Down
69 changes: 56 additions & 13 deletions perf-postprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,12 +39,28 @@ def get_extra_out_file(out_file, t):
text = "socket"
elif t == "sa":
text = "socket.average"
elif t == "savg":
text = "socket.avg.pivot"
elif t == "smax":
text = "socket.max.pivot"
elif t == "smin":
text = "socket.min.pivot"
elif t == "sp95":
text = "socket.p95.pivot"
elif t == "sr":
text = "socket.raw"
elif t == "c":
text = "cpu"
elif t == "ca":
text = "cpu.average"
elif t == "cavg":
text = "cpu.avg.pivot"
elif t == "cmax":
text = "cpu.max.pivot"
elif t == "cmin":
text = "cpu.min.pivot"
elif t == "cp95":
text = "cpu.p95.pivot"
elif t == "cr":
text = "cpu.raw"
elif t == "m":
Expand Down Expand Up @@ -571,16 +587,8 @@ def generate_metrics_time_series(time_series_df, perf_mode, out_file_path):


def generate_metrics_averages(
time_series_df: pd.DataFrame, perf_mode: Mode, out_file_path: str
time_series_df: pd.DataFrame, perf_mode: Mode, out_file_path: str, metrics
) -> None:
average_metric_file_name = ""
if perf_mode == Mode.System:
average_metric_file_name = get_extra_out_file(out_file_path, "a")
if perf_mode == Mode.Socket:
average_metric_file_name = get_extra_out_file(out_file_path, "sa")
if perf_mode == Mode.CPU:
average_metric_file_name = get_extra_out_file(out_file_path, "ca")

time_series_df.index.name = "metrics"
avgcol = time_series_df.mean(numeric_only=True, axis=1).to_frame().reset_index()
p95col = time_series_df.quantile(q=0.95, axis=1).to_frame().reset_index()
Expand All @@ -591,15 +599,45 @@ def generate_metrics_averages(
p95col.columns = ["metrics", "p95"]
mincol.columns = ["metrics", "min"]
maxcol.columns = ["metrics", "max"]

# merge columns
time_series_df = time_series_df.merge(avgcol, on="metrics", how="outer")
time_series_df = time_series_df.merge(p95col, on="metrics", how="outer")
time_series_df = time_series_df.merge(mincol, on="metrics", how="outer")
time_series_df = time_series_df.merge(maxcol, on="metrics", how="outer")

average_metric_file_name = ""
if perf_mode == Mode.System:
average_metric_file_name = get_extra_out_file(out_file_path, "a")
elif perf_mode == Mode.CPU:
average_metric_file_name = get_extra_out_file(out_file_path, "ca")
elif perf_mode == Mode.Socket:
average_metric_file_name = get_extra_out_file(out_file_path, "sa")

time_series_df[["metrics", "avg", "p95", "min", "max"]].to_csv(
average_metric_file_name, index=False
)
if perf_mode != Mode.System:
for table, type in [
[avgcol, "avg"],
[p95col, "p95"],
[mincol, "min"],
[maxcol, "max"],
]:
table["part"] = table["metrics"].map(
lambda x: int("".join(filter(str.isdigit, x.split(".")[-1])))
)
table["metrics"] = table["metrics"].map(lambda x: x.rsplit(".", 1)[0])
table = table.pivot_table(
index=["metrics"], columns=["part"], values=table.columns[1]
)
table = table.reindex(index=metrics)
table = table.reindex(sorted(table.columns), axis=1)

average_metric_file_name = get_extra_out_file(
out_file_path, ("s" if perf_mode == Mode.Socket else "c") + type
)
table.to_csv(average_metric_file_name)
return


Expand Down Expand Up @@ -994,9 +1032,9 @@ def generate_metrics(
verbose, filtered_metrics, metadata, group_to_event, group_to_df, errors
)

time_series_df = pd.DataFrame(time_metrics_result).reindex(
index=list(time_metrics_result[list(time_metrics_result.keys())[0]].keys())
)
metrics = list(time_metrics_result[list(time_metrics_result.keys())[0]].keys())

time_series_df = pd.DataFrame(time_metrics_result).reindex(index=metrics)

if verbose:
for error in errors:
Expand Down Expand Up @@ -1025,7 +1063,12 @@ def generate_metrics(
]

generate_metrics_time_series(time_series_df, perf_mode, out_file_path)
generate_metrics_averages(time_series_df, perf_mode, out_file_path)
generate_metrics_averages(
time_series_df,
perf_mode,
out_file_path,
[*dict.fromkeys([e.rsplit(".", 1)[0] for e in metrics])],
)
if perf_mode == Mode.System:
write_html(time_series_df, perf_mode, out_file_path, meta_data, pertxn)
return
Expand Down